【題目】定義:如果兩條線段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.如圖1中的BD和CE就是兩條三分線.

(1)請你在圖2中畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù)(畫出一種即可);
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分線,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且AD=BD,DE=CE,請?jiān)趫D3上畫出示意圖;
(3)在(2)的前提下,設(shè)∠C=x°,試求出x所有可能的值.

【答案】
(1)解:如圖所示:


(2)解:如圖所示:


(3)解:①當(dāng)AD=AE時(shí),

∵2x+x=30°+30°,

∴x=20°;

②當(dāng)AD=DE時(shí),

∵30°+30°+2x+x=180°,

∴x=40°


【解析】(1)45°自然想到等腰直角三角形,過底角一頂點(diǎn)作對邊的高,發(fā)現(xiàn)形成一個(gè)等腰直角三角形和直角三角形.直角三角形斜邊的中線可形成兩個(gè)等腰三角形;第二種情形以一底角作為新等腰三角形的底角,則另一底角被分為45°和22.5°,再以22.5°分別作為等腰三角形的底角或頂角,易得其中作為底角時(shí)所得的三個(gè)三角形恰都為等腰三角形;
(2)用量角器,直尺標(biāo)準(zhǔn)作30°角,而后確定一邊為BA,一邊為BC,根據(jù)題意可以先固定BA的長,而后可確定D點(diǎn),再分別考慮AD為等腰三角形的腰或者底邊,兼顧A、E、C在同一直線上,易得2種三角形ABC;
(3)根據(jù)圖形易得x的值;

【考點(diǎn)精析】本題主要考查了等腰直角三角形的相關(guān)知識點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4n),B2,﹣4)是一次函數(shù)ykx+b的圖象和反比例函數(shù)y的圖象的兩個(gè)交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線ABx軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;

3)直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E,F(xiàn)分別是AC,AB邊上點(diǎn),連接EF,將紙片ACB的一角沿EF折疊.
(1)如圖①,若折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3S△AEF , 則AE=;

(2)如圖②,若折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.求AE的長;

(3)如圖③,若折疊后點(diǎn)A落在BC延長線上的點(diǎn)N處,且使NF⊥AB.求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題提出:如圖已知直線OA的解析式是y2x,OCOA,求直線OC的函數(shù)解析式.

甲同學(xué)提出了他的想法:在直線y2x上取一點(diǎn)M,過Mx軸的垂線,垂足為D設(shè)點(diǎn)M的橫坐標(biāo)為m,則點(diǎn)M的縱坐標(biāo)為2m.即ODm,MD2m,然后在OC上截取ONOM,過Nx軸的垂線垂足為B.則點(diǎn)N的坐標(biāo)為   ,直線OC的解析式為   

2)拓展:已知直線OA的解析式是ykx,OCOA,求直線OC的函數(shù)解析式.

3)應(yīng)用:直接寫出經(jīng)過P2,3),且垂直于直線y=﹣x+2的直線解析式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個(gè)小長方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)2中陰影部分的面積為

(2)觀察圖2,請你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;

(3)x+y=-6,xy=2.75,求x-y的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=80°,OE平分∠MON,點(diǎn)AB、C分別是射線OMOE、ON上的動點(diǎn)(AB、C不與點(diǎn)O重合),連接AC交射線OE于點(diǎn)D.當(dāng)ABOM,且ADB有兩個(gè)相等的角時(shí),∠OAC的度數(shù)為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,平分,

1)求證:;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)在直線上,,點(diǎn)在線段上,,連接,則的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長度是( )

A.
B.2
C.3
D.2

查看答案和解析>>

同步練習(xí)冊答案