【題目】如圖,在△ABC中,AB=AC,∠BAC=56°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為______度.
【答案】112.
【解析】
連接OB、OC,根據(jù)角平分線的定義求出∠BAO=28°,利用等腰三角形兩底角相等求出∠ABC,根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得OA=OB,再根據(jù)等邊對(duì)等角求出∠OBA,然后求出∠OBC,再根據(jù)等腰三角形的性質(zhì)可得OB=OC,然后求出∠OCE,根據(jù)翻折變換的性質(zhì)可得OE=CE,然后利用等腰三角形兩底角相等列式計(jì)算即可得解.
如圖,連接OB、OC,
∵OA平分∠BAC,∠BAC=56°,
∴∠BAO=∠BAC=×56°=28°,
∵AB=AC,∠BAC=56°,
∴∠ABC= (180°∠BAC)=×(180°56°)=62°,
∵OD垂直平分AB,
∴OA=OB,
∴∠OBA=∠BAO=28°,
∴∠OBC=∠ABC∠OBA=62°28°=34°,
由等腰三角形的性質(zhì),OB=OC,
∴∠OCE=∠OBC=34°,
∵∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,
∴OE=CE,
∴∠OEC=180°2×34°=112°.
故答案為:112.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△DBC 中,DB=DC,A 為△DBC 外一點(diǎn),且∠BAC=∠BDC,DE AC 于 E,
(1)求證:AD 平分△ABC 的外角;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若等腰三角形的周長(zhǎng)為26,一邊為11,則腰長(zhǎng)為( ).
A. 11B. 7.5C. 11或7.5D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.訓(xùn)練課上,甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從甲手中傳出,共進(jìn)行兩次墊球
(1)請(qǐng)列舉出兩次傳球的所有等可能情況;
(2)求兩次傳球后,球回到甲手中的概率;
(3)兩次傳球后,球傳到乙手中的概率大還是傳到丙手中的概率大?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的周長(zhǎng)是16,OB、OC分別平分∠ABC和∠ACB,OD⊥BC于D且OD=2,△ABC的面積是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)﹣15﹣(﹣8)+(﹣11)﹣12
(2)(﹣3)×(﹣4)﹣15÷
(3)×36
(4)﹣22+3×(﹣1)4﹣(﹣4)×5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在數(shù)軸上點(diǎn)表示的數(shù)分別為-2,0,6,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為.
(1)填空: ;
(2)點(diǎn)開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒2個(gè)單位長(zhǎng)度,5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).
①設(shè)運(yùn)動(dòng)時(shí)間為,請(qǐng)用含有的算式分別表示出;
②在①的條件下,的值是否隨著時(shí)間的變化而變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,AD平分∠BAC,BD=CD
(1)求證:BE=CF;
(2)已知AC=10,DE=4,BE=2,求△AEC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問題:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,如圖,則下列說法正確的有( 。﹤(gè).
(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE;(5)AB∥CD.
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com