【題目】如圖,已知點的重心,過的平行線,分別交于點,交于點,作,交于點,若四邊形的面積為4,則的面積為______

【答案】9

【解析】

延長CPABG.由CPPG=21,推出CEBC=23ADAC=13,由CED∽△CBA,AFD∽△ABC,推出SCED=×SABC,SAFD=×SABC,由此可得:S平行四邊形BEDF=SABC-SCED-SAFD= SABC;SABC= S平行四邊形BEDF即可解決問題.

解:如圖,延長CPABG

∵點PABC的重心,
CPPG=21,
DEAB
CEBE=21,ADCD=12
CECB=23,ADAC=13
EDAB,DFBC
∴△CED∽△CBA,AFD∽△ABC,
SCED=×SABCSAFD=×SABC,
S平行四邊形BEDF=SABC-SCED-SAFD= SABC

SABC= S平行四邊形BEDF=×4=9.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在研究利用木板余料裁出最大面積的矩形時發(fā)現(xiàn):如圖1是一塊直角三角形形狀的木板余料,以為內(nèi)角裁一個矩形當DE,EF是中位線時,所裁矩形的面積最大若木板余料的形狀改變,請你探究:

如圖2,現(xiàn)有一塊五邊形的木板余料ABCDE,,,,現(xiàn)從中裁出一個以為內(nèi)角且面積最大的矩形,則該矩形的面積為______

如圖3,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量,,,且,從中裁出頂點M,N在邊BC上且面積最大的矩形PQMN,則該矩形的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△中,∠,點邊上一點,以為直徑的⊙與邊相切于點,與邊交于點,過點于點,連接

(1)求證:;

(2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大課間到了,小明和小歡兩人打算從教室勻速跑到600米外的操場做課間操,剛出發(fā)時小明就發(fā)現(xiàn)鞋帶松了,停下來系鞋帶,小歡則直接前往操場,小明系好鞋帶后立即沿同一路開始追趕小歡,小明在途中追上小歡后繼續(xù)前行,小明到達操場時課間操還沒有開始,于是小明站在操場等待,小歡繼續(xù)前往操場,設小明和小歡兩人想距s(米),小歡行走的時間為t(分鐘),s關于t的函數(shù)的部分圖象如圖所示,當兩人第三次相距60米時,小明離操場還有_____米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線y=﹣x2+x+2x軸交于A、B兩點,與y軸交于C點,拋物線的頂點為Q,連接BC

1)求直線BC的解析式;

2)點P是直線BC上方拋物線上的一點,過點PPDBC于點D,在直線BC上有一動點M,當線段PD最大時,求PM+MB最小值;

3)如圖②,直線AQy軸于G,取線段BC的中點K,連接OK,將GOK沿直線AQ平移得GO'K,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y,當拋物線y經(jīng)過點Q時,記頂點為Q,是否存在以G'、K'、Q'為頂點的三角形是等腰三角形?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點P(﹣2,1)關于y軸的對稱點P,點Tt,0)是x軸上的一個動點,當PTO是等腰三角形時,t的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為矩形ABCD的對稱中心,AB5cmBC6cm,點EFG分別從ABC三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,EBF關于直線EF的對稱圖形是EBF.設點EFG運動的時間為t(單位:s).

1)當t等于多少s時,四邊形EBFB為正方形;

2)若以點E、BF為頂點的三角形與以點F,CG為頂點的三角形相似,求t的值;

3)是否存在實數(shù)t,使得點B與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1x軸于點(1,0),直線l2x軸于點(2,0),直線l3x軸于點(3,0),……直線lnx軸于點(n,0).函數(shù)yx的圖象與直線l1l2、l3、…、ln分別交于點A1、A2A3、…、An;函數(shù)y2x的圖象與直線l1、l2l3、…、ln分別交于點B1B2、B3、…、Bn.如果△OA1B1的面積記作S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,…,四邊形An1AnBnBn1的面積記作Sn,那么S2018=(  )

A. 2017.5B. 2018C. 2018.5D. 2019

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC90°,∠ABC45°,點DAB延長線上一點,連接CD,∠AMC90°,AMBC于點N,∠APB90°,APCD于點Q

1)求證:ANCQ;

2)如圖,點EBA的延長線上,且ADBE,連接EN并延長交CD于點F,求證:DQEN

3)在(2)的條件下,當3AE2AB時,請直接寫出ENFN的值為   

查看答案和解析>>

同步練習冊答案