【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度沿拋物線的對(duì)稱軸向下運(yùn)動(dòng),連OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t=0),在點(diǎn)M的運(yùn)動(dòng)過程中,當(dāng)∠OMB=90°時(shí),求t的值.

【答案】
(1)解:∵拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點(diǎn),

,

解得:

∴拋物線的解析式為:y=﹣ x2+ x﹣2


(2)解:∵y=﹣ x2+ x﹣2=﹣ (x﹣2)2+ ,

∴D(2, ),

設(shè)M(2,m),

∵O( 0,0),B(3,0),

∵∠OMB=90°,

∴OM2+BM2=OB2

即m2+22+(3﹣2)2+m2=9,

∴m=

,

∴M(2,﹣ ),

∴DM= + ,

∴t= +


【解析】(1)把A(1,0)、B(3,0)代入y=ax2+bx﹣2,即可得到結(jié)果;(2)由y= x2+ x﹣2= (x﹣2)2+ ,得到D(2, ),設(shè)M(2,m),根據(jù)勾股定理列方程得到M(2,﹣ ),于是得到結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的拋物線與坐標(biāo)軸的交點(diǎn),需要了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=120°,點(diǎn)DBC的中點(diǎn),且ADAC,AC=3,AB的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)勻速運(yùn)動(dòng),速度為每秒1個(gè)單位,過點(diǎn),交對(duì)角線于點(diǎn).點(diǎn)從點(diǎn)出發(fā),沿對(duì)角線向點(diǎn)勻速運(yùn)動(dòng),速度為每秒1個(gè)單位. 、兩點(diǎn)同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為().

(1)當(dāng)時(shí),求出的值;

(2)連接,當(dāng)時(shí),求出的值;

(3)試探究:當(dāng)為何值時(shí),是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在網(wǎng)格中建立平面直角坐標(biāo)系,每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,四邊形ABCD的各頂點(diǎn)均在網(wǎng)格點(diǎn)上.

(1)將四邊形ABCD平移,使得D點(diǎn)平移到D1(3,4),畫出平移后的四邊形A1B1C1D1

(2)畫出四邊形ABCD繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的四邊形A2B2C2D2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字1,2,3,4,如圖2,正方形ABCD頂點(diǎn)處各有一個(gè)圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長(zhǎng). 例如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落到圈D,若第二次擲得2,就從D開始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落到圈B,…設(shè)游戲者從圈A起跳.

(1)若隨機(jī)擲一次骰子,求落回到圈A的概率P1;
(2)若隨機(jī)擲兩次骰子,用列表法或樹狀圖法求出最后落回到圈A的概率P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi)直角坐標(biāo)系中,直線l:y= x+1交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1 , A2 , A3 , …在x軸上,點(diǎn)B1、B2、B3 , …在直線l上.若△OB1A1 , △A1B2A2 , △A2B3A3 , …均為等邊三角形,則OAn的長(zhǎng)是( )

A.2n
B.(2n+1)
C.(2n﹣1﹣1)
D.(2n﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C 為數(shù)軸上三點(diǎn),若點(diǎn) C 到點(diǎn) A 的距離是點(diǎn) C 到點(diǎn) B 的距離的 2倍,則稱點(diǎn) C 是(A,B)的奇異點(diǎn),例如圖 1 中,點(diǎn) A 表示的數(shù)為﹣1,點(diǎn)B 表示的數(shù)為 2,表示 1 的點(diǎn) C 到點(diǎn) A 的距離為 2,到點(diǎn) B 的距離為 1,則點(diǎn)C 是(A,B)的奇異點(diǎn),但不是(B,A)的奇異點(diǎn).

(1)在圖 1 中,直接說出點(diǎn) D 是(A,B)還是(B,C)的奇異點(diǎn);

(2)如圖 2,若數(shù)軸上 M、N 兩點(diǎn)表示的數(shù)分別為﹣2 4,(M,N)的奇異點(diǎn) K M、N 兩點(diǎn)之間,請(qǐng)求出 K 點(diǎn)表示的數(shù);

(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 40,現(xiàn)有一點(diǎn) P 從點(diǎn) B 出發(fā),向左運(yùn)動(dòng).

①若點(diǎn) P 到達(dá)點(diǎn) A 停止,則當(dāng)點(diǎn) P 表示的數(shù)為多少時(shí),P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)?

②若點(diǎn) P 到達(dá)點(diǎn) A 后繼續(xù)向左運(yùn)動(dòng),是否存在使得 P、A、B 中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇異點(diǎn)的情況?若存在,請(qǐng)直接寫出此時(shí) PB 的距離;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式的規(guī)律,解答下列問題:

(1)按此規(guī)律,第④個(gè)等式為_________;第個(gè)等式為_______;(用含的代數(shù)式表示,為正整數(shù))

(2)按此規(guī)律,計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為銳角三角形,ADBC邊上的高,正方形EFGH的一邊FGBC上,頂點(diǎn)E、H分別在AB、AC上,已知BC=40cmAD=30cm

1)求證:AEH∽△ABC;

2)求這個(gè)正方形的邊長(zhǎng)與面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案