【題目】(背景知識)數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a–b|,線段AB的中點(diǎn)表示的數(shù)為.
(問題情境)如圖,數(shù)軸上點(diǎn)A表示的數(shù)為–2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng).
設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(綜合運(yùn)用)(1)填空:①A、B兩點(diǎn)間的距離AB=__________,線段AB的中點(diǎn)表示的數(shù)為__________;
②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為__________;點(diǎn)Q表示的數(shù)為__________.
(2)求當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);
(3)求當(dāng)t為何值時(shí),PQ=AB;
(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
【答案】(1)①10,3;②-2+3t,8-2t;(2)當(dāng)t=2時(shí),P、Q相遇,相遇點(diǎn)表示的數(shù)為4;(3)t=1或3;(4)5.
【解析】
(1)根據(jù)題意即可得到結(jié)論;
(2)當(dāng)P、Q兩點(diǎn)相遇時(shí),P、Q表示的數(shù)相等列方程得到t=2,于是得到當(dāng)t=2時(shí),P、Q相遇,即可得到結(jié)論;
(3)由t秒后,點(diǎn)P表示的數(shù)﹣2+3t,點(diǎn)Q表示的數(shù)為8﹣2t,于是得到PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,列方程即可得到結(jié)論;
(4)由點(diǎn)M表示的數(shù)為 ,點(diǎn)N表示的數(shù)為,即可得到結(jié)論.
(1)①8-(-2)=10,
(-2+8)÷2=3;
②﹣2+3t,8﹣2t;
(2)∵當(dāng)P、Q兩點(diǎn)相遇時(shí),P、Q表示的數(shù)相等,∴﹣2+3t=8﹣2t,解得:t=2,∴當(dāng)t=2時(shí),P、Q相遇,此時(shí),﹣2+3t=﹣2+3×2=4,∴相遇點(diǎn)表示的數(shù)為4;
(3)∵t秒后,點(diǎn)P表示的數(shù)﹣2+3t,點(diǎn)Q表示的數(shù)為8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3.
∴當(dāng):t=1或3時(shí),PQ=AB;
(4)∵點(diǎn)M表示的數(shù)為 ,點(diǎn)N表示的數(shù)為 ,∴MN=|()﹣()|=||=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某核桃種植基地計(jì)劃種植A、B兩種優(yōu)質(zhì)核桃共30畝,已知這兩種核桃的年產(chǎn)量分別為800千克/畝、1000千克/畝,收購價(jià)格分別是4.2元/千克、4元/千克.
(1)若該基地收獲兩種核桃的年總產(chǎn)量為25800千克,則A、B兩種核桃各種植了多少畝?
(2)設(shè)該基地種植A種核桃a畝,全部收購后,總收入為w元,求出w與a之間的函數(shù)關(guān)系式.若要求種植A種核桃的面積不少于B種核桃的一半,那么種植A、B兩種核桃各多少畝時(shí),該種植基地的總收入最多?最多是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)質(zhì)點(diǎn)在第一象限及軸、軸上運(yùn)動(dòng), 在第一秒鐘,它從原點(diǎn)運(yùn)動(dòng)到,然后接著按圖中箭頭所示方向運(yùn)動(dòng),且每秒移動(dòng)一個(gè)單位,那么第秒時(shí)質(zhì)點(diǎn)所在位置的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 ①如圖(1),直線l上有2個(gè)點(diǎn),則圖中有2條可用圖中字母表示的射線,有1條線段
;
②如圖(2),直線l上有3個(gè)點(diǎn),則圖中有 條可用圖中字母表示的射線,有 條線段;
③如圖(3),直線l上有n個(gè)點(diǎn),則圖中有 條可用圖中字母表示的射線,有 條線段;
④應(yīng)用(3)中發(fā)現(xiàn)的規(guī)律解決問題:某校七年級共有8個(gè)班進(jìn)行足球比賽,準(zhǔn)備進(jìn)行循環(huán)賽(即每兩隊(duì)之間賽一場),預(yù)計(jì)全部賽完共需 場比賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某工程隊(duì)準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計(jì)此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為31°,塔底B的仰角為26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi).
求:
(1)P到OC的距離.
(2)山坡的坡度tanα.
(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)學(xué)生去測長江的寬度,某學(xué)生在長江北岸點(diǎn)A處觀測到長江對岸水邊有一點(diǎn)C,測得C在A東南方向上,沿長江邊向東前行200米到達(dá)B處,測得C在B南偏東30°的方向上.
(1)畫出學(xué)生測量的示意圖;
(2)請你根據(jù)以上數(shù)據(jù),幫助該同學(xué)計(jì)算出長江的寬度(精確到0.1 m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店以每箱60元新進(jìn)一批蘋果共400箱,為計(jì)算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:
(1)求30箱蘋果的總重量
(2)若每千克蘋果的售價(jià)為10元,則賣完這批蘋果共獲利多少元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖象與x軸交于點(diǎn)A,一次函數(shù)的圖象分別與x軸、y軸交于點(diǎn)B,C,且與的圖象交于點(diǎn)D(m,4).
(1)求m,b的值;
(2)△ACD的面積是___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠(yuǎn)流長,在文學(xué)方面,《西游記》《三國演義》《水滸傳》《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學(xué)生中進(jìn)行了抽樣調(diào)查.根據(jù)調(diào)查結(jié)果繪制成如所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請結(jié)合圖中信息解決下列問題:
(1)請補(bǔ)全條形分布直方圖,本次調(diào)查一共抽取了 名學(xué)生;
(2)扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為 度;
(3)若該中學(xué)有1000名學(xué)生,請估計(jì)至少閱讀3部四大古典名著的學(xué)生有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com