【題目】如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______.
【答案】
【解析】
作梯形ABCD關(guān)于AB的軸對稱圖形,將BC'繞點C'逆時針旋轉(zhuǎn)120°,則有GE'=FE',P與Q是關(guān)于AB的對稱點,當(dāng)點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,F'M為所求長度;過點F'作F'H⊥BC',M是BC中點,則Q是BC'中點,由已知條件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.
作梯形ABCD關(guān)于AB的軸對稱圖形,
作F關(guān)于AB的對稱點G,P關(guān)于AB的對稱點Q,
∴PF=GQ,
將BC'繞點C'逆時針旋轉(zhuǎn)120°,Q點關(guān)于C'G的對應(yīng)點為F',
∴GF'=GQ,
設(shè)F'M交AB于點E',
∵F關(guān)于AB的對稱點為G,
∴GE'=FE',
∴當(dāng)點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,
∴F'M為所求長度;
過點F'作F'H⊥BC',
∵M是BC中點,
∴Q是BC'中點,
∵∠B=90°,∠C=60°,BC=2AD=4,
∴C'Q=F'C'=2,∠F'C'H=60°,
∴F'H=,HC'=1,
∴MH=7,
在Rt△MF'H中,F'M;
∴△FEP的周長最小值為.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為的直徑,為的切線,連接,過作交于,連接交于,延長交于點
(1)求證:是的切線;
(2)若
①求的長;
②連接交于,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在以為原點的平面直角坐標(biāo)系中,拋物線的頂點為點,且經(jīng)過點,,三點.
(1)求直線和該拋物線相應(yīng)的函數(shù)表達(dá)式;
(2)如圖①,點為拋物線上的一個動點,且在直線的上方,過點作軸的平行線與直線交于點,求的最大值.
(3)如圖②,過點的直線交軸于點,且軸,點是拋物線上,之間的一個動點,直線,與分別交于,,當(dāng)點運動時,是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個三位數(shù)n,如果n滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k=,當(dāng)F(s)+F(t)=18時,求k的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(教材呈現(xiàn))下圖是華師版九年級上冊數(shù)學(xué)教材第103—104頁的部分內(nèi)容.
定理證明:請根據(jù)教材圖24.2.2的提示,結(jié)合圖①完成直角三角形的性質(zhì):“直角三角形斜邊上的中線等于斜邊的一半”的證明.
定理應(yīng)用:如圖②,在中,,垂足為點(點在上),是邊上的中線,垂直平分.求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗和哥哥小明分別從家和圖書館同時出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達(dá)圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發(fā)的時間x(min)之間的函數(shù)圖象如圖所示:
(1)求兩人相遇時小明離家的距離;
(2)求小麗離距離圖書館500m時所用的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長春市對全市各類(A型、B型、C型.其它型)校車共848輛進(jìn)行環(huán)保達(dá)標(biāo)普查,普查結(jié)果繪制成如下條形統(tǒng)計圖:
(1)求全市各類環(huán)保不達(dá)標(biāo)校車的總數(shù);
(2)求全市848輛校車中環(huán)保不達(dá)標(biāo)校車的百分比;
(3)規(guī)定環(huán)保不達(dá)標(biāo)校車必須進(jìn)行維修,費用為:A型500元/輛,B型1000元/輛,C型600元/輛,其它型300元/輛,求全市需要進(jìn)行維修的環(huán)保不達(dá)標(biāo)校車維修費的總和;
(4)若每輛校車乘坐40名學(xué)生,那么一次性維修全部不達(dá)標(biāo)校車將會影響全市80000名學(xué)生乘校車上學(xué)的百分比是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實數(shù)根.
(1)求k的取值范圍;
(2)若此方程的兩實數(shù)根x1,x2滿足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半徑為1,圓心角為60°,則圖中陰影部分的面積是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com