【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,AE∥CD,CE∥AB,判斷四邊形ADCE的形狀,并證明你的結(jié)論.
【答案】解:四邊形ADCE是菱形.理由如下:
∵AE∥CD,CE∥AB,
∴四邊形ADCE是平行四邊形.
又∵在Rt△ABC中,∠ACB=90°,D是AB的中點,
∴CD=AD,
∴四邊形ADCE是菱形.
【解析】首先判定四邊形ADCE是平行四邊形,然后由直角三角形斜邊上的中線的性質(zhì)判定該平行四邊形的鄰邊相等,即可證得四邊形ADCE是菱形.
【考點精析】根據(jù)題目的已知條件,利用直角三角形斜邊上的中線和菱形的判定方法的相關(guān)知識可以得到問題的答案,需要掌握直角三角形斜邊上的中線等于斜邊的一半;任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程x2﹣(2m﹣1)x+m2﹣m﹣2=0.
⑴不解方程,判別方程根的情況;
⑵若方程有一個根為1,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD與AC相交于點E,AB=9,cos∠BAC=,tan∠DBC=.
求:(1)邊CD的長;
(2)△BCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(1,3)關(guān)于原點O對稱的點A′的坐標為( 。
A.(-1,3)
B.(1,-3)
C.(3,1)
D.(-1,-3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com