【題目】如圖,在平面直角坐標(biāo)系中,直線l x軸、y軸分別交于點(diǎn)M,N,高為3的等邊三角形ABC,邊BCx軸上,將此三角形沿著x軸的正方向平移,在平移過程中,得到A1B1C1,當(dāng)點(diǎn)B1與原點(diǎn)重合時(shí),解答下列問題:

1)求出點(diǎn)A1的坐標(biāo),并判斷點(diǎn)A1是否在直線l上;

2)求出邊A1C1所在直線的解析式;

3)在坐標(biāo)平面內(nèi)找一點(diǎn)P,使得以PA1、C1、M為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫出P點(diǎn)坐標(biāo).

【答案】1A13),在直線上;(2;(3P1,3),P2,﹣3),P3(﹣,3).

【解析】試題分析:

(1) 根據(jù)題意畫出示意圖,過點(diǎn)A1x軸的垂線AD,RtA1DB1中利用等邊三角形的性質(zhì)和勾股定理可以求得線段A1DB1D的長(zhǎng),進(jìn)而寫出點(diǎn)A1的坐標(biāo). 將點(diǎn)A1的橫坐標(biāo)代入直線l的解析式,求得相應(yīng)的縱坐標(biāo)通過對(duì)比求得的縱坐標(biāo)和點(diǎn)A1的縱坐標(biāo)可以判斷點(diǎn)A1與直線l的位置關(guān)系.

(2) 根據(jù)等邊三角形的邊長(zhǎng)容易得到點(diǎn)C1的坐標(biāo). 利用點(diǎn)A1和點(diǎn)C1的坐標(biāo),結(jié)合一次函數(shù)的一般形式,可以獲得關(guān)于待定系數(shù)的方程,求解這些方程進(jìn)而可以寫出邊A1C1所在直線的解析式.

(3) 由于利用A1C1M的三個(gè)內(nèi)角均可以構(gòu)造出符合題意的平行四邊形,所以本小題應(yīng)對(duì)這三種情況分別進(jìn)行討論. 根據(jù)題意畫出各種情況的示意圖. 當(dāng)以∠A1C1M為平行四邊形的一個(gè)內(nèi)角構(gòu)造平行四邊形時(shí),可以過點(diǎn)A1y軸的垂線AE,利用RtA1B1E中的幾何關(guān)系求得線段A1EB1E的長(zhǎng). 利用點(diǎn)M的坐標(biāo)和等邊三角形的邊長(zhǎng)可以得到線段C1M的長(zhǎng)進(jìn)而獲得線段A1P的長(zhǎng),從而可以寫出點(diǎn)P的坐標(biāo). 當(dāng)以∠A1MC1為平行四邊形的一個(gè)內(nèi)角構(gòu)造平行四邊形時(shí),利用RtA1B1F中的幾何關(guān)系和線段C1M的長(zhǎng),可以求得線段A1FB1F的長(zhǎng)進(jìn)而寫出點(diǎn)P的坐標(biāo). 當(dāng)以∠C1A1M為平行四邊形的一個(gè)內(nèi)角構(gòu)造平行四邊形時(shí),可以過點(diǎn)Px軸的垂線PG利用平行四邊形的性質(zhì)獲得線段PM的長(zhǎng),利用RtPGM中的幾何關(guān)系和線段B1M的長(zhǎng),可以求得線段PGOG的長(zhǎng),進(jìn)而寫出點(diǎn)P的坐標(biāo).

試題解析:

(1)

如圖,過點(diǎn)A1A1DOM,垂足為D.

∵△A1B1C1是等邊三角形,A1DOM

∴∠B1A1D=30°,

∴在RtA1DB1中, ,

A1D=3

∴在RtA1DB1中, ,

.

∴點(diǎn)A1的坐標(biāo)為(, 3).

由直線l的解析式,得

當(dāng)x=時(shí), ,

∴點(diǎn)A1在直線l.

(2) ∵△A1B1C1是等邊三角形, ,

.

∴點(diǎn)C1的坐標(biāo)為(, 0).

設(shè)直線A1C1的解析式為y=kx+b (k0).

將點(diǎn)A1 (, 3),點(diǎn)C1 (, 0)的坐標(biāo)分別代入直線A1C1的解析式,得

,

解之,得

,

∴直線A1C1的解析式為.

(3) 點(diǎn)P的坐標(biāo)為(, 3),(, 3)(, -3). 求解過程如下.

根據(jù)題意,分別對(duì)下面三種情況進(jìn)行討論.

①若以∠A1C1M為平行四邊形的一個(gè)內(nèi)角,則所求平行四邊形為平行四邊形A1C1MP.

如圖①,過點(diǎn)A1A1EON,垂足為E.

由直線l的解析式,得

當(dāng)y=0時(shí),

x=.

∴點(diǎn)M的坐標(biāo)為(, 0).

OM=.

,

.

∵△A1B1C1是等邊三角形,

∴∠A1B1C1=60°

∴∠A1B1E=90°-A1B1C1=90°-60°=30°.

∴在RtA1EB1中, , .

A1PC1M,A1EON

∴點(diǎn)E,A1P在同一條直線上,

.

∴點(diǎn)P的坐標(biāo)為(, 3).

②若以∠A1MC1為平行四邊形的一個(gè)內(nèi)角,則所求平行四邊形為平行四邊形PC1MA1.

A1PC1M,

A1FON

∴在RtA1FB1中, , .

,

.

∴點(diǎn)P的坐標(biāo)為(, 3).

③若以∠C1A1M為平行四邊形的一個(gè)內(nèi)角,則所求平行四邊形為平行四邊形A1C1PM.

如圖③,過點(diǎn)PPGOM,垂足為G.

∵△A1B1C1是等邊三角形,

∴∠A1C1B1=60°,

∴∠A1C1M=180°-A1C1B1=180°-60°=120°

A1C1PM,

∴∠PMC1=A1C1M=120°

∴∠PMG=180°-PMC1=180°-120°=60°,

∴在RtPMG中,∠MPG=90°-PMG=90°-60°=30°.

,

∴在RtPGM中, ,

.

OM=,

.

∴點(diǎn)P的坐標(biāo)為(, -3).

綜上所述,點(diǎn)P的坐標(biāo)為(, 3),(, 3)(, -3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AC是直徑,BC=BA,在∠ACB的內(nèi)部作∠ACF=30°,且CF=CA,過點(diǎn)FFHAC于點(diǎn)H,連接BF

1)若CF交⊙O于點(diǎn)GO的半徑是4,求 的長(zhǎng);

2)請(qǐng)判斷直線BF與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,∠A=80°,∠B=40°,D,E分別是AB,AC上的點(diǎn)DEBC,AED的度數(shù)為( 。

A. 40° B. 60° C. 80° D. 120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程組:

1 2

3 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,ACB=90°,A=30°,點(diǎn)OAB中點(diǎn),點(diǎn)P為直線BC上的動(dòng)點(diǎn)(不與點(diǎn)B、點(diǎn)C重合),連接OCOP,將線段OP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°,得到線段PQ,連接BQ

1)如圖1,當(dāng)點(diǎn)P在線段BC上時(shí),請(qǐng)直接寫出線段BQCP的數(shù)量關(guān)系.

2)如圖2,當(dāng)點(diǎn)PCB延長(zhǎng)線上時(shí),(1)中結(jié)論是否成立?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由;

3)如圖3,當(dāng)點(diǎn)PBC延長(zhǎng)線上時(shí),若BPO=15°BP=4,請(qǐng)求出BQ的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

(1)請(qǐng)寫出ABC各點(diǎn)的坐標(biāo)。

(2)求出SABC

(3)若把ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得ABC,在圖中畫出ABC變化位置,并寫出A′、B′、C的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知4xy=6,用含x的代數(shù)式表示y,則y=______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列調(diào)查中,最適合采用普查的是(  )

A.了解淮坊市民對(duì)建設(shè)高鐵的意見

B.了解同一批電腦的使用壽命

C.檢查一枚用于發(fā)射衛(wèi)星的運(yùn)載火箭的各個(gè)零部件

D.了解淮坊市汽車駕駛員對(duì)禮讓行人的意識(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(﹣x32x23+(﹣x34

查看答案和解析>>

同步練習(xí)冊(cè)答案