已知拋物線的頂點為(0,4)且與x軸交于(﹣2,0),(2,0).
(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設(shè)平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.
解:(1)y=﹣x2+4。
(2)①如圖,連接CE,CD,
∵OD是⊙C的切線,∴CE⊥OD。
在Rt△CDE中,∠CED=90°,CE=AC=2,DC=4,
∴∠EDC=30°。
∴在Rt△CDO中,∠OCD=90°,CD=4,∠ODC=30°,
∴OC=。
∴當直線OD與以AB為直徑的圓相切時,k=OC=。
②存在k=,能夠使得點O、P、D三點恰好在同一條直線上。理由如下:
設(shè)拋物線y=﹣x2+4向右平移k個單位后的解析式是y=﹣(x﹣k)2+4,它與y=﹣x2+4交于點P,
由﹣(x﹣k)2+4=﹣x2+4,解得x1=,x2=0(不合題意舍去)。
當x=時,y=﹣k2+4。
∴點P的坐標是(,﹣k2+4)。
設(shè)直線OD的解析式為y=mx,把D(k,4)代入,得mk=4,解得m=。
∴直線OD的解析式為y=x。
若點P(,﹣k2+4)在直線y=x上,得﹣k2+4=•,解得k=±(負值舍去)。
∴當k=時,O、P、D三點在同一條直線上。
解析試題分析:(1)∵拋物線的頂點為(0,4),∴可設(shè)拋物線解析式為y=ax2+4。
又∵拋物線過點(2,0),∴0=4a+4,解得a=﹣1!鄴佄锞解析式為y=﹣x2+4。
(2)①連接CE,CD,根據(jù)切線的性質(zhì)得出CE⊥OD,再解Rt△CDE,得出∠EDC=30°,然后Rt△CDO,得出OC=,則k=OC=。
②設(shè)拋物線y=﹣x2+4向右平移k個單位后的解析式是y=﹣(x﹣k)2+4,它與y=﹣x2+4交于點P,先求出交點P的坐標是(,﹣k2+4),再利用待定系數(shù)法求出直線OD的解析式為y=x,然后將點P的坐標代入y=x,即可求出k的值。
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖.在平面直角坐標系中,邊長為的正方形ABCD的頂點A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點E.
(1)求證:△OAD≌△EAB;
(2)求過點O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點P,其關(guān)于直線BF的對稱點在x軸上?若有,求出點P的坐標;
(4)連接OE,若點M是直線BF上的一動點,且△BMD與△OED相似,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知:如圖①,直線與x軸、y軸分別交于A、B兩點,兩動點D、E分別從A、B兩點同時出發(fā)向O點運動(運動到O點停止);對稱軸過點A且頂點為M的拋物線(a<0)始終經(jīng)過點E,過E作EG∥OA交拋物線于點G,交AB于點F,連結(jié)DE、DF、AG、BG.設(shè)D、E的運動速度分別是1個單位長度/秒和個單位長度/秒,運動時間為t秒.
(1)用含t代數(shù)式分別表示BF、EF、AF的長;
(2)當t為何值時,四邊形ADEF是菱形?判斷此時△AFG與△AGB是否相似,并說明理由;
(3)當△ADF是直角三角形,且拋物線的頂點M恰好在BG上時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點A(0,4),B(2,0).
(1)求直線AB的函數(shù)解析式;
(2)已知點M是線段AB上一動點(不與點A、B重合),以M為頂點的拋物線y=(x﹣m)2+n與線段OA交于點C.
①求線段AC的長;(用含m的式子表示)
②是否存在某一時刻,使得△ACM與△AMO相似?若存在,求出此時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川瀘州12分)如圖,在直角坐標系中,點A的坐標為(﹣2,0),點B的坐標為(1,),已知拋物線y=ax2+bx+c(a≠0)經(jīng)過三點A、B、O(O為原點).
(1)求拋物線的解析式;
(2)在該拋物線的對稱軸上,是否存在點C,使△BOC的周長最。咳舸嬖,求出點C的坐標;若不存在,請說明理由;
(3)如果點P是該拋物線上x軸上方的一個動點,那么△PAB是否有最大面積?若有,求出此時P點的坐標及△PAB的最大面積;若沒有,請說明理由.(注意:本題中的結(jié)果均保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè))。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形,如果存在,請求出點G的坐標,如果不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),B(﹣1,3),C(﹣3,3)
(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對稱軸為直線l,該圖象上的點P(m,n)在第三象限,其關(guān)于直線l的對稱點為M,點M關(guān)于y軸的對稱點為N,若四邊形OAPN的面積為20,求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系xOy中,矩形ABCO的頂點A、C分別在y軸、x軸正半軸上,點P在AB上,PA=1,AO=2.經(jīng)過原點的拋物線的對稱軸是直線x=2.
(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長的三角板的直角頂點放在P點處,兩直角邊恰好分別經(jīng)過點O和C.現(xiàn)在利用圖2進行如下探究:
①將三角板從圖1中的位置開始,繞點P順時針旋轉(zhuǎn),兩直角邊分別交OA、OC于點E、F,當點E和點A重合時停止旋轉(zhuǎn).請你觀察、猜想,在這個過程中,的值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,求出的值.
②設(shè)(1)中的拋物線與x軸的另一個交點為D,頂點為M,在①的旋轉(zhuǎn)過程中,是否存在點F,使△DMF為等腰三角形?若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com