如圖所示,AB是⊙O的直徑,⊙O交BC的中點(diǎn)于D,DE⊥AC于E,連接AD,則下列結(jié)論:
①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切線,
正確的有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
D

試題分析:根據(jù)直徑所對(duì)的圓周角是直角推出∠ADB即可判斷①;求出OD∥AC,推出DE⊥OD,得出DE是圓O的切線即可判斷④;根據(jù)線段垂直平分線推出AC=AB,即可判斷③,根據(jù)切線的性質(zhì)即可判斷②.
∵AB是⊙O的直徑,
∴∠ADB=90°=∠ADC,
即AD⊥BC,①正確;
連接OD,
∵D為BC中點(diǎn),
∴BD=DC,
∵OA=OB,
∴DO∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵OD是半徑,
∴DE是⊙O的切線,∴④正確;
∴∠ODA+∠EDA=90°,
∵∠ADB=∠ADO+∠ODB=90°,
∴∠EDA=∠ODB,
∵OD=OB,
∴∠B=∠ODB,
∴∠EDA=∠B,∴②正確;
∵D為BC中點(diǎn),AD⊥BC,
∴AC=AB,
∵OA=OB=AB,
∴OA= AC,∴③正確.
正確的有4個(gè),故選D.
點(diǎn)評(píng):解答本題的關(guān)鍵是掌握好直徑所對(duì)的圓周角是直角,判定切線的方法,垂直平分線上的點(diǎn)到線段兩端的距離相等等性質(zhì),靈活運(yùn)用這些性質(zhì)進(jìn)行推理。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AC是⊙O的直徑,PA切⊙O于點(diǎn)A,點(diǎn)B是⊙O上的一點(diǎn),且∠BAC=30º,∠APB=60º.

(1)求證:PB是⊙O的切線;
(2)若⊙O的半徑為2,求弦AB及PA,PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為半圓直徑,O 為圓心,C為半圓上一點(diǎn),E是弧AC的中點(diǎn),OE交弦AC于點(diǎn)D。若AC=8cm,DE=2cm,則OD的長(zhǎng)為      cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,C是以AB為直徑的⊙O上一點(diǎn),過O作OE⊥AC于點(diǎn)E,過點(diǎn)A作⊙O的切線交OE的延長(zhǎng)線于點(diǎn)F,連接CF并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)P.

(1)求證:PC是⊙O的切線.
(2)若AF=1,OA=,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB⊙O的直徑,弦CD⊥AB,垂足為E,連AC、BC,若∠BAC=30°,CD=6cm,

(1)求∠BCD度數(shù);
(2)求⊙O的直徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

正方形ABCD與它的外接圓之間形成了四個(gè)相等的弓形(陰影部分),已知陰影部分的面積之和是45.6平方分米,求圓的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為⊙O的弦,⊙O的半徑為5cm,OC⊥AB于點(diǎn)D,交⊙O于點(diǎn)C,且CD=lcm,則弦AB的長(zhǎng)是         cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

半徑為6cm的圓,120°的圓心角所對(duì)的弧長(zhǎng)是       cm .(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓的半徑為3,一點(diǎn)剄圓心的距離是5,則這點(diǎn)在
A.圓內(nèi)B.圓上C.圓外D.都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案