【題目】如圖,AB是⊙O的切線,切點(diǎn)為B,OA交⊙O于點(diǎn)C,過(guò)點(diǎn)C的切線交AB于點(diǎn)D.若∠BAO=30°,CD=2.
(1)求⊙O的半徑;
(2)若點(diǎn)P在上運(yùn)動(dòng),設(shè)點(diǎn)P到直線BC的距離為x,圖中陰影部分的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
【答案】(1)⊙O的半徑為2;(2)y=x+2(0≤x≤2+3).
【解析】
(1)題干要求⊙O的半徑,做輔助線連結(jié)OB,利用AB是⊙O的切線,∠BAO=30°,CD=2.求出AB,進(jìn)而OB=AB,求出⊙O的半徑.
(2)題干要求y與x之間的函數(shù)關(guān)系式以及自變量x的取值范圍,尋找與x有關(guān)的條件,得到點(diǎn)P到直線BC的距離為x,分兩部分求出陰影部分的面積,進(jìn)而得到y與x之間的函數(shù)關(guān)系式以及自變量x的取值范圍.
解:(1)連結(jié)OB,如圖,
∵AB、CD是⊙O的切線,
∴DB=DC=2,OB⊥AB,CD⊥OA,
∴∠ABO=∠ACD=90°,
∵∠BAO=30°,
∴AD=2CD=2BD,
∴AD=4,AB=AD+BD=6,
∴OB=AB=2,
即⊙O的半徑為2;
(2)∵∠BAO=30°,
∴∠BOC=60°,
∵點(diǎn)P到直線BC的距離為x,
∴△PBC的面積為×2×x=x,
弓形BC的面積=扇形COB的面積﹣△COB的面積
=
=2,
∴y=x+2(0≤x≤2+3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)城汽車銷售公司5月份銷售某種型號(hào)汽車,當(dāng)月該型號(hào)汽車的進(jìn)價(jià)為30萬(wàn)元/輛,若當(dāng)月銷售量超過(guò)5輛時(shí),每多售出1輛,所有售出的汽車進(jìn)價(jià)均降低0.1萬(wàn)元/輛.根據(jù)市場(chǎng)調(diào)查,月銷售量不會(huì)突破30臺(tái).
(1)設(shè)當(dāng)月該型號(hào)汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實(shí)際進(jìn)價(jià)為y萬(wàn)元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號(hào)汽車的銷售價(jià)為32萬(wàn)元/輛,公司計(jì)劃當(dāng)月銷售利潤(rùn)45萬(wàn)元,那么該月需售出多少輛汽車?(注:銷售利潤(rùn)=銷售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】線段在平面直角坐標(biāo)系中的位置如圖所示,為坐標(biāo)原點(diǎn).若線段上一點(diǎn)的坐標(biāo)為,則直線與線段的交點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品廠生產(chǎn)一種半成品食材,成本為2元/千克,每天的產(chǎn)量(百千克)與銷售價(jià)格(元/千克)滿足函數(shù)關(guān)系式,從市場(chǎng)反饋的信息發(fā)現(xiàn),該半成品食材每天的市場(chǎng)需求量(百千克)與銷售價(jià)格(元/千克)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:
銷售價(jià)格(元/千克) | 2 | 4 | …… | 10 |
市場(chǎng)需求量(百千克) | 12 | 10 | …… | 4 |
已知按物價(jià)部門規(guī)定銷售價(jià)格不低于2元/千克且不高于10元/千克.
(1)直接寫出與的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)當(dāng)每天的產(chǎn)量小于或等于市場(chǎng)需求量時(shí),這種半成品食材能全部售出,而當(dāng)每天的產(chǎn)量大于市場(chǎng)需求量時(shí),只能售出符合市場(chǎng)需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄.
①當(dāng)每天的半成品食材能全部售出時(shí),求的取值范圍;
②求廠家每天獲得的利潤(rùn)y(百元)與銷售價(jià)格的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)為______元/千克時(shí),利潤(rùn)有最大值;若要使每天的利潤(rùn)不低于24(百元),并盡可能地減少半成品食材的浪費(fèi),則應(yīng)定為______元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△ABC的位置,連接C'B.
(1)求∠ABC'的度數(shù);
(2)求C'B的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司投資新建了一商場(chǎng),共有商鋪30間.據(jù)預(yù)測(cè),當(dāng)每間的年租金定為10萬(wàn)元時(shí),可全部租出.每間的年租金每增加5 000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費(fèi)用1萬(wàn)元,未租出的商鋪每間每年交各種費(fèi)用5 000元.
(1)當(dāng)每間商鋪的年租金定為13萬(wàn)元時(shí),能租出多少間?
(2)當(dāng)每間商鋪的年租金定為多少萬(wàn)元時(shí),該公司的年收益(收益=租金-各種費(fèi)用)為275萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,n個(gè)邊長(zhǎng)為1的相鄰正方形的一邊均在同一直線上,點(diǎn)M1,M2,M3,…Mn分別為邊B1B2,B2B3,B3B4,…,BnBn+1的中點(diǎn),△B1C1M1的面積為S1,△B2C2M2的面積為S2,…△BnCnMn的面積為Sn,則Sn= .(用含n的式子表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com