【題目】已知點OABC的兩邊AB,AC所在直線的距離相等,OB=OC.

(1)如圖①,若點O在邊BC,求證:AB=AC;

(2)如圖②若點OABC的內(nèi)部,求證:AB=AC;

(3)若點OABC的外部,AB=AC成立嗎?請畫圖表示.

【答案】(1)證明見解析;(2)證明見解析;(3)不一定成立,畫圖見解析.

【解析】

試題(1)求證AB=AC,就是求證∠B=∠C,可通過構(gòu)建全等三角形來求.過點O分別作OE⊥ABE,OF⊥ACF,那么可以用斜邊直角邊定理(HL)證明直角三角形DEBDFC全等來實現(xiàn);

2)思路和輔助線同(1)證得Rt△OEB≌Rt△OFC后,可得出∠OBE=∠OCF,等腰三角形ABC中,∠ABC=∠ACB,因此∠OBC=∠OCB,那么OB=OC;

3)不一定成立,當∠A的平分線所在直線與邊BC的垂直平分線重合時,有AB=AC;否則,AB≠AC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)

(2)(﹣72)×2

(3)

(4)

(5)3m2﹣mn﹣2m2+4mn

(6)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:數(shù)軸上點A表示的數(shù)是8,點B表示的數(shù)是﹣4.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左運動,動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左運動.P,Q兩點同時出發(fā).

(1)經(jīng)過多長時間,點P位于點Q左側(cè)2個單位長度?

(2)在點P運動的過程中,若點MAP的中點,點NBP的中點,求線段MN的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,坐標平面上,ABC≌△DEF,其中A,B,C的對應頂點分別為D,E,F(xiàn),AB=BC=5.A點的坐標為(-3,1),B,C兩點的縱坐標都是-3,D,E兩點在y軸上則點Fy軸的距離為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:①相等的角是對頂角;②若,則互補;③同一平面內(nèi)的三條直線,若相交,則相交;④在同一平面內(nèi),兩條不重合的直線的位置關系可能是平行或垂直;⑤有公共頂點并且相等的角是對頂角.其中正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果點將線段分成兩條相等的線段,那么叫做線段的二等分點(中點);如果點,將線段分成三條相等的線段,,那么,叫做線段的三等分點;…;依此類推,如果點將線段分成條相等的線段,那么叫做線段等分點,如圖①所示.

已知點在直線的同側(cè),請回答下列問題.

(1)在所給邊長為個單位長度的正方形網(wǎng)格中,探究:

①如圖②,若點到直線的距離分別是4個單位長度和2個單位長度,則線段 的中點到直線的距離是 個單位長度;

②如圖③,若點到直線的距離分別是2個單位長度和5個單位長度,則線段 的中點到直線的距離是 個單位長度;

③由①②可以發(fā)現(xiàn)結(jié)論:若點到直線的距離分別是個單位長度和個單位長度,則線段 的中點到直線的距離是 個單位長度.

(2)如圖④,若點到直線的距離分別是,利用(1)中的結(jié)論求線段的三等分點,到直線的距離分別是 .

(3)若點到直線的距離分別是,點為線段等分點,直接寫出第等分點到直線的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCACB=90°,AC=BC,AEBC邊上的中線過點CCFAE,垂足為點F,在直線CF上截取CD=AE.

(1)求證:BDBC;

(2)AC=12 cm,BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B(2,0)兩點(點A在點B的左側(cè)),與y軸交于點C(0,8).

(1)求該拋物線的解析式;
(2)若將該拋物線向下平移m個單位長度,使平移后所得拋物線的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)已知點Q在x軸上,點P在拋物線上,是否存在以A、C、P、Q為頂點的四邊形是平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,,點和點點出發(fā),分別在射線和射線上運動,且點運動的速度是點運動的速度的倍,當點運動至__________時,全等.

查看答案和解析>>

同步練習冊答案