【題目】從﹣2,﹣1,0,,1,2這六個(gè)數(shù)字中,隨機(jī)抽取一個(gè)數(shù)記為a,則使得關(guān)于x的方程=1的解為非負(fù)數(shù),且滿足關(guān)于x的不等式組只有三個(gè)整數(shù)解的概率是__.
【答案】
【解析】
解關(guān)于x的分式方程,根據(jù)分式方程的解為非負(fù)數(shù)及分式有意義的條件求出a的范圍,解不等式組,由不等式組整數(shù)解的個(gè)數(shù)求出a的范圍,再從6個(gè)數(shù)中找到同時(shí)滿足以上兩個(gè)條件的情況,從而利用概率公式求解可得.
解方程=1得x=,
由題意知>0且≠3,
解得:a<1且a≠﹣,
解不等式組,得:a<x≤2,
∵不等式組只有3個(gè)整數(shù)解,
∴不等式組的整數(shù)解為2、1、0,
則﹣1≤a<0,
∴在所列的六個(gè)數(shù)字中,同時(shí)滿足以上兩個(gè)條件的只有﹣1這1個(gè)數(shù)字,
∴使得關(guān)于x的方程=1的解為非負(fù)數(shù),且滿足關(guān)于x的不等式組只有三個(gè)整數(shù)解的概率是,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖像如圖,下列結(jié)論:①;②;③;④.正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD和正方形AEFG,AB=12,AE=6.設(shè)∠BAE=α(0°≤α≤45°,點(diǎn)E在正方形ABCD內(nèi)部),BE的延長線交直線DG于點(diǎn)Q.
(1)求證:△ADG≌△ABE;
(2)試求出當(dāng)α由0°變化到45°過程中,點(diǎn)Q運(yùn)動(dòng)的路線長,并畫出點(diǎn)Q的運(yùn)動(dòng)路徑;直接寫出當(dāng)α等于多少度時(shí),點(diǎn)G恰好在點(diǎn)Q運(yùn)動(dòng)的路徑上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是測量一物體體積的過程:
步驟一:將180 mL的水裝進(jìn)一個(gè)容量為300 mL的杯子中;
步驟二:將三個(gè)相同的玻璃球放入水中,結(jié)果水沒有滿;
步驟三:再將一個(gè)同樣的玻璃球放入水中,結(jié)果水滿溢出.
根據(jù)以上過程,推測一個(gè)玻璃球的體積在下列哪一范圍內(nèi)?(1 mL=1 cm3)( ).
A. 10 cm3以上,20 cm3以下 B. 20 cm3以上,30 cm3以下
C. 30 cm3以上,40 cm3以下 D. 40 cm3以上,50 cm3以下
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn),,拋物線:(為常數(shù))與軸的交點(diǎn)為.
(1)經(jīng)過點(diǎn),求它的解析式,并寫出此時(shí)的對(duì)稱軸及頂點(diǎn)坐標(biāo).
(2)設(shè)點(diǎn)的縱坐標(biāo)為,求的最大值,此時(shí)上有兩點(diǎn)( ,),(,),其中,比較與的大小;
(3)當(dāng)線段被只分為兩部分,且這兩部分的比是1:4時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)求證:無論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)若等腰△ABC的一邊長a=6,另兩邊長b、c恰好是這個(gè)方程的兩個(gè)根,求此三角形的三邊長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(n,3)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b﹣>0時(shí)x的取值范圍.
(3)若M是x軸上一點(diǎn),且△MOB和△AOB的面積相等,求M點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)函數(shù)圖象上的任意一點(diǎn)P(x,y),y﹣x稱為該點(diǎn)的“坐標(biāo)差”,函數(shù)圖象上所有點(diǎn)的“坐標(biāo)差”的最大值稱為該函數(shù)的“特征值”
(感悟)根據(jù)你的閱讀理解回答問題:
(1)點(diǎn)P (2,1)的“坐標(biāo)差”為 ;(直接寫出答案)
(2)求一次函數(shù)y=2x+1(﹣2≤x≤3)的“特征值”;
(應(yīng)用)(3)二次函數(shù)y=﹣x2+bx+c(bc≠0)交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A與點(diǎn)B的“坐標(biāo)差”相等,若此二次函數(shù)的“特征值”為﹣1,當(dāng)m≤x≤m+3時(shí),此函數(shù)的最大值為﹣2m,求m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,∠BAC=α,直線l經(jīng)過點(diǎn)A(不經(jīng)過點(diǎn)B或點(diǎn)C),點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)為點(diǎn)D,連接BD,CD.
(1)如圖1,
①求證:點(diǎn)B,C,D在以點(diǎn)A為圓心,AB為半徑的圓上.
②直接寫出∠BDC的度數(shù)(用含α的式子表示)為______.
(2)如圖2,當(dāng)α=60°時(shí),過點(diǎn)D作BD的垂線與直線l交于點(diǎn)E,求證:AE=BD.
(3)如圖3,當(dāng)α=90°時(shí),記直線l與CD的交點(diǎn)為F,連接BF.將直線l繞點(diǎn)A旋轉(zhuǎn),當(dāng)線段BF的長取得最大值時(shí),直接寫出tan∠FBC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com