【題目】如圖,在△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點D,E,F,點O是EF中點,連結(jié)BO井延長到G,且GO=BO,連接EG,FG
(1)試求四邊形EBFG的形狀,說明理由;
(2)求證:BD⊥BG
(3)當AB=BE=1時,求EF的長,
【答案】(1) 四邊形EBFG是矩形;(2)證明見解析;(3).
【解析】
(1)根據(jù)對角線互相平分的四邊形平行四邊形可得四邊形EBFG是平行四邊形,再由∠CBF=90°,即可判斷EBFG是矩形.
(2)由直角三角形斜邊中線等于斜邊一半可知BD=CD,OB=OE,即可得∠C=∠CBD,∠OEB=∠OBE,由∠FDC=90°即可得∠DBG=90°;
(3)連接AE,由AB=BE=1勾股定理易求AE=,結(jié)合已知易證△ABC≌△EBF,得BF=BC=1+再由勾股定理即可求出EF=.
解:(1)結(jié)論:四邊形EBFG是矩形.
理由:∵OE=OF,OB=OG,
∴四邊形EBFG是平行四邊形,
∵∠ABC=90°即∠CBF=90°,
∴EBFG是矩形.
(2)∵CD=AD,∠ABC=90°,
∴BD=CD
∴∠C=∠CBD,
同理可得:∠OEB=∠OBE,
∵DF垂直平分AC,即∠EDC=90°,
∴∠C+∠DEC=90°,
∵∠DEC=∠OEB,
∴∠CBD+∠OBE=90°,
∴BD⊥BG.
(3)如圖:連接AE,
在Rt△ABE中,AB=BE=1,
∴AE=,
∵DF是AC垂直平分線,
∴AE=CE,
∴BC=1+
∵∠CDE=∠CBF=90°,
∴∠C=∠BFE,
在△ABC和△EBF中,
,
∴△ABC≌△EBF(AAS)
∴BF=BC,
在Rt△BEF中,BE=1,BF=1+,
∴EF=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時間,y 表示張強離家的距離。根據(jù)圖象提供的信息,以下四個說法錯誤的是( )
A. 體育場離張強家2.5千米 B. 張強在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點.
(1)已知點A(3,1),連接OA,作如下探究:
探究一:平移線段OA,使點O落在點B,設(shè)點A落在點C,若點B的坐標為(1,2),請在圖①中作出BC,點C的坐標是__________.
探究二:將線段OA繞點O逆時針旋轉(zhuǎn)90°,設(shè)點A落在點D,則點D的坐標是__________;連接AD,則AD=________(圖②為備用圖).
(2)已知四點O(0,0),A(a,b),C,B(c,d),順次連接O,A,C,B,O,若所得到的四邊形為平行四邊形,則點C的坐標是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,∠BCD=∠D=90,上底AD=3,下底BC=,高CD=4,沿AC把梯形ABCD翻折,點D是恰好落在AB邊上的點E處,求△BCE面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小江家的住房戶型結(jié)構(gòu)圖.根據(jù)結(jié)構(gòu)圖提供的信息,解答下列問題:
(1)用含a、b的代數(shù)式表示小江家的住房總面積S;
(2)小江家準備給房間重新鋪設(shè)地磚.若臥室所用的地磚價格為每平方米50元;衛(wèi)生間、廚房和客廳所用的地磚價格為每平方米40元.請用含a、b的代數(shù)式表示鋪設(shè)地磚的總費用W;
(3)在(2)的條件下,當a=6,b=4時,求W的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D、E為⊙O上位于AB異側(cè)的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE、DE、DF.
(1)求證:∠E=∠C;
(2)若DF=6cm,cosB=,E是弧AB的中點,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OF,OD分別是∠AOE,∠BOE的平分線.
(1)寫出∠DOE的補角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度數(shù);
(3)試問射線OD與OF之間有什么特殊的位置關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A和點B在數(shù)軸上對應(yīng)的數(shù)分別為a和b,且(a+6)2+|b﹣8|=0.
(1)求線段AB的長;
(2)點C在數(shù)軸上所對應(yīng)的數(shù)為x,且x是方程x﹣1=x+1的解,在線段AB上是否存在點D,使得AD+BD=CD?若存在,請求出點D在數(shù)軸上所對應(yīng)的數(shù),若不存在,請說明理由;
(3)在(2)的條件下,線段AD和BC分別以6個單位長度/秒和5個單位長度/秒的速度同時向右運動,運動時間為t秒,M為線段AD的中點,N為線段BC的中點,若MN=12,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上有A,B,C三點,分別代表﹣30,﹣10,10,兩只電子螞蟻甲,乙分別從A,C兩點同時相向而行,甲的速度為4個單位/秒,乙的速度為6個單位/秒.
(1)甲,乙經(jīng)過多少秒在數(shù)軸上相遇,并求出相遇點表示的數(shù)?
(2)多少秒后,甲到A,B,C的距離和為48個單位?
(3)在甲到A、B、C的距離和為48個單位時,若甲調(diào)頭并保持速度不變,則甲,乙還能在數(shù)軸上相遇嗎?若能,求出相遇點;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com