【題目】長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈A射線自AM順時針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動的速度是a°/秒,燈B轉(zhuǎn)動的速度是b°/秒,且ab滿足|a-3b|+(a+b-4)=0.假定這一帶長江兩岸河堤是平行的,即PQMN,且∠BAN=45°

1)求a、b的值;

2)若燈B射線先轉(zhuǎn)動20秒,燈A射線才開始轉(zhuǎn)動,在燈B射線到達BQ之前,A燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?

3)如圖2,兩燈同時轉(zhuǎn)動,在燈A射線到達AN之前.若射出的光束交于點C,過CCDACPQ于點D,則在轉(zhuǎn)動過程中,∠BAC與∠BCD的數(shù)量關系是否發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請求出其取值范圍.

【答案】1a=3,b=1;(2A燈轉(zhuǎn)動10秒或85秒時,兩燈的光束互相平行;(3)∠BAC與∠BCD的數(shù)量關系不發(fā)生變化,2BAC3BCD.

【解析】

1)根據(jù)非負數(shù)的性質(zhì)列方程組求解即可;

2)設A燈轉(zhuǎn)動t秒,兩燈的光束互相平行,分兩種情況:①在燈A射線到達AN之前;②在燈A射線到達AN之后,分別列出方程求解即可;

3)設A燈轉(zhuǎn)動時間為t秒,則∠CAN180°3t,∠BAC=∠BANCAN3t135°,過點CCFPQ,則CFPQMN,得出∠BCA=∠CBD+∠CAN180°2t,∠BCD=∠ACDBCA2t90°,即可得出結(jié)果.

解:(1)∵|a-3b|+a+b-4=0,

,

解得:,

a=3,b=1;

2)設A燈轉(zhuǎn)動t秒,兩燈的光束互相平行,

①在燈A射線到達AN之前,由題意得:3t=(20t×1,

解得:t10,

②在燈A射線到達AN之后,由題意得:3t180°180°20t×1,

解得:t85

綜上所述,A燈轉(zhuǎn)動10秒或85秒時,兩燈的光束互相平行;

3)∠BAC與∠BCD的數(shù)量關系不發(fā)生變化,2BAC3BCD;

理由:設A燈轉(zhuǎn)動時間為t秒,則∠CAN180°3t,

∴∠BAC=∠BANCAN45°180°3t)=3t135°,

PQMN,

如圖2,過點CCFPQ,則CFPQMN,

∴∠BCF=∠CBD,∠ACF=∠CAN,

∴∠BCA=∠BCF+∠ACF=∠CBD+∠CANt180°3t180°2t,

CDAC,

∴∠ACD90°,

∴∠BCD=∠ACDBCA90°180°2t)=2t90°,

2BAC3BCD.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1,給出四個結(jié)論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點B( ,y1),C( ,y2)為函數(shù)圖象上的兩點,則y1<y2其中正確結(jié)論是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某手機經(jīng)銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進3部甲型號手機和2部乙型號手機,共需要資金4600元.

1)求甲、乙型號手機每部進價為多少元;

2)該店計劃購進甲、乙兩種型號的手機銷售,預計用不多于1.8萬元且不少于1.74萬元的資金購進這兩部手機共20臺;若售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1180元.為了獲得最多的利潤,應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按圖甲的位置放置.

1)那么∠AOD和∠BOC相等嗎?請說明理由;

2)試猜想∠AOC和∠BOD在數(shù)量上有何關系?請說明理由;

3)若將這副三角板按圖乙所示擺放,三角板的直角頂點重合在點O處.上述關系還成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線x軸于A,交y軸于B,過B,且,點C在第四象限,點

求點A,B,C的坐標;

M是直線AB上一動點,當最小時,求點M的坐標;

P、Q分別在直線ABBC上,是以RQ為斜邊的等腰直角三角形直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在結(jié)束了380課時初中階段教學內(nèi)容的教學后,王老師計劃按原課程設置再增加70課時用于總復習,將380課時按內(nèi)容所占比例,繪制如下統(tǒng)計圖表(圖1、圖2),請根據(jù)圖表提供的信息,回答問題:

1)圖1統(tǒng)計與概率所在扇形的圓心角為   度;

2)圖2中的a   ;

3)在70課時的總復習中,王老師應安排多少課時復習圖形與幾何內(nèi)容?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從下列四個條件①ABBC,②ACBD,③∠ABC90°,④ACBD中選兩個作為補充條件,使ABCD成為正方形,下列四種選法錯誤的是( 。

A. ①②B. ①③C. ②③D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】①如圖,四邊形ABCD中,對角線相交于點OE、F、G、H分別是AD,BDBC,AC的中點.

1)求證:四邊形EFGH是平行四邊形;

2)當四邊形ABCD滿足一個什么條件時,四邊形EFGH是菱形?并證明你的結(jié)論;

②如圖,在RtABC中,∠ACB90°ACBC,DBC中點,CEADE,BFAC,交CE的延長線與點F.求證:AB垂直平分DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )

A. B. C. 3 D.

查看答案和解析>>

同步練習冊答案