【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對(duì)稱軸x=1.如圖所示,有下列5個(gè)結(jié)論:①abc>0;b<a+c;4a+2b+c>0;2c<3b;a+b>m(am+b)(m≠1的實(shí)數(shù)).其中所有結(jié)論正確的是______(填寫番號(hào)).

【答案】③④⑤

【解析】

根據(jù)函數(shù)圖象和二次函數(shù)的性質(zhì)可以判斷題目中各個(gè)小題的結(jié)論是否成立,從而可以解答本題.

解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對(duì)稱軸在y軸右側(cè),則與a的符號(hào)相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①錯(cuò)誤,
當(dāng)x=-1時(shí),y=a-b+c<0,得b>a+c,故②錯(cuò)誤,
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對(duì)稱軸x=1,
∴x=2時(shí)的函數(shù)值與x=0的函數(shù)值相等,
∴x=2時(shí),y=4a+2b+c>0,故③正確,
∵x=-1時(shí),y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正確,
由圖象可知,x=1時(shí),y取得最大值,此時(shí)y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正確,
故答案為:③④⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠ACB90°,AC4cm,BC3cm,將三角形ABC沿AB方向向右平移得到三角形DEF,若AE8cm,DB2cm.

(1)求三角形ABC向右平移的距離AD的長;

(2)求四邊形AEFC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有下列問題:今有勾五步,股十二步,問勾中容方幾何?其意思為今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?該問題的答案是________步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 的中線, 是線段 上一點(diǎn)(不與點(diǎn) 重合). 于點(diǎn) ,連結(jié)

(1)如圖1,當(dāng)點(diǎn)重合時(shí),求證:四邊形是平行四邊形

(2)如圖2,當(dāng)點(diǎn)不與重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.

(3)如圖3,延長于點(diǎn),若,且

①求的度數(shù);

②當(dāng)時(shí),求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場,為了吸引顧客,在白色情人節(jié)當(dāng)天舉辦了商品有獎(jiǎng)酬賓活動(dòng),凡購物滿200元者,有兩種獎(jiǎng)勵(lì)方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎(jiǎng)的機(jī)會(huì).已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色(如表)決定送禮金券的多少.

兩紅

一紅一白

兩白

禮金券(元)

18

24

18

1)請(qǐng)你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.

2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請(qǐng)你幫助分析選擇哪種方案較為實(shí)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平面直角坐標(biāo)系中的點(diǎn)A(a,1),t=ab﹣a2﹣b2(a,b是實(shí)數(shù)

(1)若關(guān)于x的反比例函數(shù)y=過點(diǎn)A,求t的取值范圍.

(2)若關(guān)于x的一次函數(shù)y=bx過點(diǎn)A,求t的取值范圍.

(3)若關(guān)于x的二次函數(shù)y=x2+bx+b2過點(diǎn)A,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知OA=6厘米,OB=8厘米.點(diǎn)P從點(diǎn)B開始沿BA邊向終點(diǎn)A1厘米/秒的速度移動(dòng);點(diǎn)Q從點(diǎn)A開始沿AO邊向終點(diǎn)O1厘米/秒的速度移動(dòng).P、Q同時(shí)出發(fā)運(yùn)動(dòng)時(shí)間為t(s).

(1)t為何值時(shí),APQAOB相似?

(2)當(dāng) t為何值時(shí),APQ的面積為8cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我縣古田鎮(zhèn)某紀(jì)念品商店在銷售中發(fā)現(xiàn):成功從這里開始的紀(jì)念品平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售量,增加盈利,盡快減少庫存,該商店在今年國慶黃金周期間,采取了適當(dāng)?shù)慕祪r(jià)措施,改變營銷策略后發(fā)現(xiàn):如果每件降價(jià)4元,那么平均每天就可多售出8件.商店要想平均每天在銷售這種紀(jì)念品上盈利1200元,那么每件紀(jì)念品應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖,則下列結(jié)論:①abc0;②a+b+c=2;③b24ac0;④b2a.其中正確的結(jié)論是(  )

A. ①② B. ②③ C. ②④ D. ③④

查看答案和解析>>

同步練習(xí)冊(cè)答案