【題目】如圖,正方形ABCD的邊CD與Rt△EFG的直角邊EF重合,將正方形ABCD以1cm/s的速度沿FE方向移動(dòng),在移動(dòng)過(guò)程中,邊CD始終與邊EF重合(移動(dòng)開(kāi)始時(shí)點(diǎn)C與點(diǎn)F重合).連接AE,過(guò)點(diǎn)C作AE的平行線交直線EG于點(diǎn)H,連接HD.已知正方形ABCD的邊長(zhǎng)為1cm,EF=4cm,設(shè)正方形移動(dòng)時(shí)間為x(s),線段EH的長(zhǎng)為y(cm),其中0≤x≤2.5.
(1)當(dāng)x=2時(shí),AE的長(zhǎng)為 ;
(2)試求出y關(guān)于x的函數(shù)關(guān)系式,并求出△EHD與△ADE的面積之差;
(3)當(dāng)正方形ABCD移動(dòng)時(shí)間x= 時(shí),線段HD所在直線經(jīng)過(guò)點(diǎn)B.
【答案】(1)cm(2);(3)
【解析】
試題分析:(1)根據(jù)正方形的性質(zhì)得到∠ADE=90°,根據(jù)勾股定理計(jì)算即可;
(2)根據(jù)題意表示出EC=4﹣x,ED=3﹣x,證明△AED∽△HCE,根據(jù)相似三角形的性質(zhì)得到比例式,代入計(jì)算即可;
(3)根據(jù)正方形的性質(zhì)得到∠ADB=45°,根據(jù)等腰直角三角形的性質(zhì)列出方程,解方程即可.
解:(1)當(dāng)x=2時(shí),即CF=2cm,
則EC=EF﹣CF=2cm,又CD=1cm,
∴ED=1cm,
∵四邊形ABCD是正方形,
∴∠ADE=90°,
∴AE==cm,
故答案為:cm;
(2)∵正方形移動(dòng)時(shí)間為x(s),
∴CF=x,
則EC=4﹣x,ED=3﹣x,
∵AE∥HC,
∴∠AED=∠HCE,又∠ADE=∠HEC,
∴△AED∽△HCE,
∴=,即=,
解得,y=,
△ADE的面積=×(3﹣x)×1=,
△EHC的面積=×(4﹣x)×=,
則△EHD的面積=××=,
△EHD的面積﹣△ADE的面積=;
(3)當(dāng)線段HD所在直線經(jīng)過(guò)點(diǎn)B時(shí),
∵∠ADB=45°,∠ADE=90°,
∴∠EDH=45°,
∴EH=ED,即=3﹣x,
解得,x1=,x2=(舍去),
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,方程cx2+bx﹣a=0是關(guān)于x的一元二次方程.
(1)判斷方程cx2+bx﹣a=0的根的情況為 (填序號(hào));
①方程有兩個(gè)相等的實(shí)數(shù)根;
②方程有兩個(gè)不相等的實(shí)數(shù)根;
③方程無(wú)實(shí)數(shù)根;
④無(wú)法判斷
(2)如圖,若△ABC內(nèi)接于半徑為2的⊙O,直徑BD⊥AC于點(diǎn)E,且∠D=30°,求方程cx2+bx﹣a=0的根;
(3)若x=a是方程cx2+bx﹣a=0的一個(gè)根,△ABC的三邊a、b、c的長(zhǎng)均為整數(shù),試求a、b、c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一組數(shù)據(jù)1,2,x,4,5的平均數(shù)是3,則這組數(shù)據(jù)的方差是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是某校九年級(jí)10名同學(xué)參加學(xué)校演講比賽的統(tǒng)計(jì)表:
成績(jī)/分 | 80 | 85 | 90 | 95 |
人數(shù)/人 | 1 | 2 | 5 | 2 |
則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別為( )
A. 90,90 B. 90,89 C. 85,89 D. 85,90
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球比賽的記分為:勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分,一隊(duì)打了14場(chǎng)比賽,負(fù)5場(chǎng),共得19分,那么這個(gè)隊(duì)勝了( )
A. 3場(chǎng) B. 4場(chǎng) C. 5場(chǎng) D. 6場(chǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果a+b=c,且a、b都大于c,那么a、b一定是( )
A. 同為負(fù)數(shù) B. 一個(gè)正數(shù)一個(gè)負(fù)數(shù) C. 同為正數(shù) D. 一個(gè)負(fù)數(shù)一個(gè)是零
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若3a+2b-1>2a+3b,則a、b的大小關(guān)系為( )
A. a<b B. a>b C. a=b D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】美國(guó)航空航天局發(fā)布消息,2011年3月19日,月球?qū)⒌竭_(dá)19年來(lái)距離地球最近的位置,它與地球的距離約為356000千米,其中356000用科學(xué)記數(shù)法表示為 ( )
A. 3.56×105 B. 0.356×106 C. 3.56×104 D. 35.6×104
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com