【題目】如圖,在中,,是斜邊上的中線,以為直徑的分別交于點、,過點,垂足為

1)若的半徑為,,求的長;(2)求證:相切.

【答案】1;(2)見解析.

【解析】

1)根據(jù)直角三角形斜邊的中線等于斜邊的一半,可求得的長度,再根據(jù)勾股定理,可求得的長度. 根據(jù)圓的直徑對應(yīng)的圓周角為直角,可知,根據(jù)等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合,可求得的長.

(2)根據(jù)三角形中位線平行于底邊,可知,再根據(jù),可知,則可知相切.

1)連接,

,

的斜邊的中線,由于直角三角形斜邊的中線等于斜邊的一半,

,,

為圓的直徑.,即,

由于等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合,

2、的中點,由于三角形中位線平行于底邊,

,

,

為半徑

與圓相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠A36°.

1)用尺規(guī)作圖作∠ABC的角平分線,交AC于點D;(保留作圖痕跡,不寫作法).

2)求證:△BCD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場對某種商品進(jìn)行銷售,第x天的銷售單價為m/件,日銷售量為n件,其中mn分別是x1≤x≤30,且x為整數(shù))的一次函數(shù),銷售情況如下表:

1)過程表中數(shù)據(jù),分別直接寫出mx,nx的函數(shù)關(guān)系式: , ;

2)求商場銷售該商品第幾天時該商品的日銷售額恰好為3600元?

3)銷售商品的第15天為兒童節(jié),請問:在兒童節(jié)前(不包括兒童節(jié)當(dāng)天)銷售該商品第幾天時該商品的日銷售額最多?商場決定將這天該商品的日銷售額捐獻(xiàn)給兒童福利院,試求出商場可捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,點分別是邊的中點,連接.將繞點逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為

問題發(fā)現(xiàn)

當(dāng)時,   ;當(dāng)時,   

拓展探究

試判斷:當(dāng)時,的大小有無變化?請僅就圖2的情形給出證明.

問題解決

繞點逆時針旋轉(zhuǎn)至三點在同一條直線上時,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)課題研究小組針對蘭州市住房窗戶“如何設(shè)計遮陽篷”這一課題進(jìn)行了探究,過程如下:

問題提出:

如下圖是某住戶窗戶上方安裝的遮陽蓬,要求設(shè)計的遮陽篷既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(nèi).

方案設(shè)計:

如下圖,該數(shù)學(xué)課題研究小組通過調(diào)查研究設(shè)計了垂直于墻面的遮陽篷

數(shù)據(jù)收集:

通過查閱相關(guān)資料和實際測量:蘭州市一年中,夏至這一天的正午時刻,太陽光線與遮陽篷的夾角最大():冬至這一天的正午時刻,太陽光線與遮陽篷的夾角最小();窗戶的高度

問題解決:

根據(jù)上述方案及數(shù)據(jù),求遮陽篷的長.(結(jié)果精確到,參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生對中國民族樂器的喜愛情況,隨機(jī)抽取了本校的部分學(xué)生進(jìn)行調(diào)查(每名學(xué)生選擇并且只能選擇一種喜愛樂器),現(xiàn)將收集到的數(shù)據(jù)繪制如下的兩幅不完整的統(tǒng)計圖.

1)這次共抽取 學(xué)生進(jìn)行調(diào)查,扇形統(tǒng)計圖中的 .

2)請補全統(tǒng)計圖;

3)在扇形統(tǒng)計圖中“揚琴”所對扇形的圓心角是 度;

4)若該校有3000名學(xué)生,請你估計該校喜愛“二胡”的學(xué)生約有 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).

(1)當(dāng)PEAB,PFBC時,如圖1,則的值為   ;

(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;

(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當(dāng)60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年中國北京世界園藝博覽會(以下簡稱世園會”)429日至107日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:解密世園會愛我家,愛園藝、園藝小清新之旅快速車覽之旅.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.

(1)李欣選擇線路園藝小清新之旅的概率是多少?

(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一種商品,單價30元,試銷中發(fā)現(xiàn)這種商品每天的銷售量夕與每件的銷售價滿足關(guān)系:=100-2若商店每天銷售這種商品要獲得200元的銷售利潤,那么每件商品的售價應(yīng)定為多少元?每天要售出這種商品多少件?

查看答案和解析>>

同步練習(xí)冊答案