【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:
如圖1,在中,點(diǎn)在線段上,,,,,求的長(zhǎng).
經(jīng)過(guò)社團(tuán)成員討論發(fā)現(xiàn),過(guò)點(diǎn)作,交的延長(zhǎng)線于點(diǎn),通過(guò)構(gòu)造就可以解決問(wèn)題(如圖.
請(qǐng)回答: , .
(2)請(qǐng)參考以上解決思路,解決問(wèn)題:
如圖3,在四邊形中,對(duì)角線與相交于點(diǎn),,,,,求的長(zhǎng).
【答案】(1) 75°;4(2)
【解析】
(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進(jìn)而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對(duì)等邊可得出AB=AD=4,此題得解;
(2)過(guò)點(diǎn)B作BE∥AD交AC于點(diǎn)E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長(zhǎng)度,再在Rt△CAD中,利用勾股定理可求出DC的長(zhǎng),此題得解.
解:(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
∵∠BOD=∠COA,
∴△BOD∽△COA,
∴.
又∵AO=3,
∴OD=AO=,
∴AD=AO+OD=4.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
∴AB=AD=4
故答案為:75;4.
(2)過(guò)點(diǎn)B作BE∥AD交AC于點(diǎn)E,如圖所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴
∵AO=3,
∴EO=,
∴AE=4
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=12.
在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,
解得:CD=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)y=ax2+2ax﹣4(a≠0)的圖象與x軸交于點(diǎn)A,B(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于點(diǎn)C,△ABC的面積為12.
(1)求二次函數(shù)圖象的對(duì)稱軸與它的解析式;
(2)點(diǎn)D在y軸上,當(dāng)以A、O、D為頂點(diǎn)的三角形與△BOC相似時(shí),求點(diǎn)D的坐標(biāo);
(3)點(diǎn)D的坐標(biāo)為(﹣2,1),點(diǎn)P在二次函數(shù)圖象上,∠ADP為銳角,且tan∠ADP=2,求點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸的原點(diǎn)為O,點(diǎn)A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)B對(duì)應(yīng)的數(shù)為1,AB=8,BC=3,動(dòng)點(diǎn)P、Q同時(shí)從A、C出發(fā),分別以每秒2個(gè)長(zhǎng)度單位和每秒1個(gè)長(zhǎng)度單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)
(1)求點(diǎn)A、C分別對(duì)應(yīng)的數(shù);
(2)求點(diǎn)P、Q分別對(duì)應(yīng)的數(shù);(用含t的式子表示)
(3)試問(wèn)當(dāng)t為何值時(shí),OP=OQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有3000名學(xué)生.為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問(wèn)卷調(diào)查的學(xué)生只能從以下六個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
種類 | A | B | C | D | E | F |
上學(xué)方式 | 電動(dòng)車 | 私家車 | 公共交通 | 自行車 | 步行 | 其他 |
某校部分學(xué)生主要上學(xué)方式扇形統(tǒng)計(jì)圖某校部分學(xué)生主要上學(xué)方式條形統(tǒng)計(jì)圖
根據(jù)以上信息,回答下列問(wèn)題:
(1)參與本次問(wèn)卷調(diào)查的學(xué)生共有____人,其中選擇B類的人數(shù)有____人.
(2)在扇形統(tǒng)計(jì)圖中,求E類對(duì)應(yīng)的扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若將A、C、D、E這四類上學(xué)方式視為“綠色出行”,請(qǐng)估計(jì)該校每天“綠色出行”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點(diǎn)E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求證:△AEF∽△ABC:
(2)求正方形EFMN的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在BC上,求證:AB=AC;
(2)如圖2,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),已知點(diǎn)的坐標(biāo),點(diǎn)位置如圖所示,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱。
(1)在圖中描出點(diǎn);寫出圖中點(diǎn)的坐標(biāo):______________,點(diǎn)的坐標(biāo):_______________;
(2)畫出關(guān)于軸的對(duì)稱圖形,并求出四邊形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(4,1),C(4,3),反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,點(diǎn)P是一次函數(shù)y=mx+3﹣4m(m≠0)的圖象與該反比例函數(shù)圖象的一個(gè)公共點(diǎn);
(1)求反比例函數(shù)的解析式;
(2)通過(guò)計(jì)算說(shuō)明一次函數(shù)y=mx+3﹣4m的圖象一定過(guò)點(diǎn)C;
(3)對(duì)于一次函數(shù)y=mx+3﹣4m(m≠0),當(dāng)y隨x的增大而增大時(shí),確定點(diǎn)P的橫坐標(biāo)的取值范圍,(不必寫過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面。
現(xiàn)有19張硬紙板,裁剪時(shí)張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com