【題目】如圖,∠BAE +AED=180°,∠1=2,那么∠M=N.下面是推理過(guò)程,請(qǐng)你完成.

解:∵∠BAE+AED=180°(已知)

ABDE______.

∴∠BAE=AEF______.

又∵∠1=2(已知)

BAE1=AEF_____(等式性質(zhì)),即 MAE = NEA .

___________________.

∴∠M=N(兩直線平行,內(nèi)錯(cuò)角相等).

【答案】見解析

【解析】

由已知易得ABCD,則∠BAE=AEC,又∠1=2,所以∠MAE=AEN,則AMEN,故∠M=N

∵∠BAE+AED =180° (已知)

ABDE同旁內(nèi)角互補(bǔ),兩直線平行

BAE=AEF 兩直線平行,內(nèi)錯(cuò)角相等.

又∵∠1=2(已知)

∴∠BAE 1 = AEF 2(等式性質(zhì)),即∠MAE=NEA .

AMEN內(nèi)錯(cuò)角相等,兩直線平行.

∴∠M=N(兩直線平行,內(nèi)錯(cuò)角相等).

故答案為:同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等;∠2;AM;EN;內(nèi)錯(cuò)角相等,兩直線平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知有理數(shù)a、b、c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示.解答下列各題:

(1)判斷下列各式的符號(hào)(填“>”“<”)

a﹣b   0,b﹣c   0,c﹣a   0,b+c   0

(2)化簡(jiǎn):|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD∠BAD=∠C=90,AB=AD,AE⊥BCE,旋轉(zhuǎn)后能與重合.

(1)旋轉(zhuǎn)中心是哪一點(diǎn)?

(2)旋轉(zhuǎn)了多少度?

(3)若AE=5㎝,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AM∥BN,BC∠ABN的平分線.

(1)過(guò)點(diǎn)AAD⊥BC,垂足為O,ADBN交于點(diǎn)D. (要求:用尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母,保留作圖痕跡,不寫作法.)

(2)求證:AC=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某物流公司的快遞車和貨車同時(shí)從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達(dá)乙地后卸完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時(shí),兩車之間的距離y(千米)與貨車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個(gè)結(jié)論:

①快遞車從甲地到乙地的速度為100千米/時(shí);②甲、乙兩地之間的距離為120千米;③圖中點(diǎn)B的坐標(biāo)為(75);④快遞車從乙地返回時(shí)的速度為90千米/時(shí).以上4個(gè)結(jié)論中正確的是( )

A. ①③④ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在矩形ABCD中,AB=10cm,BC=8cm,點(diǎn)PA出發(fā),沿ABCD路線運(yùn)動(dòng),到D停止,點(diǎn)P的速度為每秒1cma秒時(shí)點(diǎn)P改變速度,變?yōu)槊棵?/span>bcm,圖②是點(diǎn)P出發(fā)x秒后△APD的面積S(cm2)x()的關(guān)系圖象,

(1)參照?qǐng)D②,求ab及圖②中的c值;

(2)設(shè)點(diǎn)P離開點(diǎn)A的路程為y(cm),請(qǐng)寫出動(dòng)點(diǎn)P改變速度后y與出發(fā)后的運(yùn)動(dòng)時(shí)間x()的關(guān)系式,并求出點(diǎn)P到達(dá)DC中點(diǎn)時(shí)x的值.

(3)當(dāng)點(diǎn)P出發(fā)多少秒后,△APD的面積是矩形ABCD面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點(diǎn).

(1)求證:四邊形EBFD是平行四邊形;

(2)若AD=AE=2,A=60°,求四邊形EBFD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB= ,AC=5,tanA=2,D是BC中點(diǎn),點(diǎn)P是AC上一個(gè)動(dòng)點(diǎn),將△BPD沿PD折疊,折疊后的三角形與△PBC的重合部分面積恰好等于△BPD面積的一半,則AP的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班實(shí)行小組量化考核制,為了了解同學(xué)們的學(xué)習(xí)情況,王老師對(duì)甲、乙兩個(gè)小組連續(xù)六周的綜合評(píng)價(jià)得分進(jìn)行了統(tǒng)計(jì),并將得到的數(shù)據(jù)制成如下的統(tǒng)計(jì)表:

周次

組別

甲組

12

15

16

14

14

13

乙組

9

14

10

17

16

18

(1)請(qǐng)根據(jù)上表中的數(shù)據(jù)完成下表.(:方差的計(jì)算結(jié)果精確到0.1)

平均數(shù)

中位數(shù)

方差

甲組

乙組

(2)根據(jù)綜合評(píng)價(jià)得分統(tǒng)計(jì)表中的數(shù)據(jù),請(qǐng)?jiān)趫D中畫出甲、乙兩組綜合評(píng)價(jià)得分的折線統(tǒng)計(jì)圖.

(3)由折線統(tǒng)計(jì)圖中的信息,請(qǐng)分別對(duì)甲、乙兩個(gè)小組連續(xù)六周的學(xué)習(xí)情況進(jìn)行簡(jiǎn)要評(píng)價(jià).

查看答案和解析>>

同步練習(xí)冊(cè)答案