【題目】已知Rt△ABC的斜邊AB在平面直角坐標系的x軸上,點C(1,3)在反比例函數(shù)y=的圖象上,且sin∠BAC=.
(1)求k的值和邊AC的長;
(2)求點B的坐標.
【答案】(1) k的值和邊AC的長分別是:3,5.(2) 點B的坐標是(-,0),(,0).
【解析】
試題分析:(1)本題需先根據(jù)C點的坐標在反比例函數(shù)y=的圖象上,從而得出k的值,再根據(jù)且sin∠BAC=,得出AC的長.
(2)本題需先根據(jù)已知條件,得出∠DAC=∠DCB,從而得出CD的長,根據(jù)點B的位置即可求出正確答案.
試題解析:(1)∵點C(1,3)在反比例函數(shù)y=的圖象上,
∴3=,解得k=3,
∵sin∠BAC=
∴sin∠BAC==
∴AC=5;
∴k的值和邊AC的長分別是:3,5.
(2)①當點B在點A右邊時,如圖,
作CD⊥x軸于D.
∵△ABC是直角三角形,
∴∠DAC=∠DCB,
又∵sin∠BAC=,
∴tan∠DAC=,
∴,
又∵CD=3,
∴BD=,
∴OB=1+=,
∴B(,0);
②當點B在點A左邊時,如圖,
作CD⊥x軸于D.
∵△ABC是直角三角形,
∴∠B+∠A=90°,∠B+∠BCD=90°,
∴∠DAC=∠DCB,
又∵sin∠BAC=,
∴tan∠DAC=,
∴,
又∵CD=3,
∴BD=,BO=BD-1=,
∴B(-,0)
∴點B的坐標是(-,0),(,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE于點G,BG=4,則△EFC的周長為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面內有兩點A(0,2)、B(﹣2,0)、C(2,0).
(1)△ABC的形狀是 等腰直角三角形;
(2)求△ABC的面積及AB的長;
(3)在y軸上找一點P,如果△PAB是等腰三角形,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電腦經銷商計劃購進一批電腦機箱和液晶顯示器,若購電腦機箱10臺和液液晶顯示器8臺,共需要資金7000元;若購進電腦機箱2臺和液示器5臺,共需要資金4120元.
(1)每臺電腦機箱、液晶顯示器的進價各是多少元?
(2)該經銷商購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元.根據(jù)市場行情,銷售電腦機箱、液晶顯示器一臺分別可獲利10元和160元.該經銷商希望銷售完這兩種商品,所獲利潤不少于4100元.試問:該經銷商有哪幾種進貨方案?哪種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將大小不同的兩個正方形按圖1,圖2的方式擺放.若圖1中陰影部分的面積是6,圖2中陰影部分的面積是5,則大正方形的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,樓房CD旁邊有一池塘,池塘中有一電線桿BE高10米,在池塘邊F處測得電線桿頂端E的仰角為45°,樓房頂點D的仰角為75°,又在池塘對面的A處,觀測到A,E,D在同一直線上時,測得電線桿頂端E的仰角為30°.
(1)求池塘A,F(xiàn)兩點之間的距離;
(2)求樓房CD的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:對于依次排列的多項式x+a,x+b,x+c,x+d(a,b,c,d是常數(shù)),當它們滿足在,且M為常數(shù)時,則稱a,b,c,d是一組平衡數(shù),M是該組平衡數(shù)的平衡因子,例如:對于多項式x+2,x+1,x+6,x+5,因為,所以2,1,6,5是一組平衡數(shù),4是該組平衡數(shù)的平衡因子.
(1)已知2,4,7,9是一組平衡數(shù),求該組平衡數(shù)的平衡因子M;
(2)若a,b,c,d是一組平衡數(shù),a=-4,d=3,請直接寫出組b,c的值;
(3)當a,b,c,d之間滿是什么數(shù)量關系時,它們是一組平衡數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y=2x+b交x軸于點D,且⊙P的半徑為,AB=4.
(1)求點B,P,C的坐標;
(2)求證:CD是⊙P的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃用3300元購進甲,乙兩種商品共100個,這兩種商品的進價、售價如下表:
進價(元/個) | 售價(元/個) | |
甲種 | 25 | 30 |
乙種 | 45 | 60 |
(1)求甲、乙兩種商品各進多少個?
(2)全部售完100個商品后,該商場獲利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com