【題目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是邊BC上任意一點(diǎn),連接AD,過點(diǎn)C作CE⊥AD于點(diǎn)E.
(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長;
(2)如圖2,過點(diǎn)C作CF⊥CE,且CF=CE,連接FE并延長交AB于點(diǎn)M,連接BF,求證:AM=BM.
【答案】(1) 2﹣ ;(2)見解析
【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根據(jù)直角三角形30°角的性質(zhì)可得AC=2CE=2,再得∠ECD=90°-60°=30°,設(shè)ED=x,則CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的長;
(2)如圖2,連接CM,先證明△ACE≌△BCF,則∠BFC=∠AEC=90°,證明C、M、B、F四點(diǎn)共圓,則∠BCM=∠MFB=45°,由等腰三角形三線合一的性質(zhì)可得AM=BM.
詳解:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∵∠BAD=15°,
∴∠CAE=45°﹣15°=30°,
Rt△ACE中,CE=1,
∴AC=2CE=2,
Rt△CED中,∠ECD=90°﹣60°=30°,
∴CD=2ED,
設(shè)ED=x,則CD=2x,
∴CE=x,
∴x=1,
x=,
∴CD=2x=,
∴BD=BC﹣CD=AC﹣CD=2﹣;
(2)如圖2,連接CM,
∵∠ACB=∠ECF=90°,
∴∠ACE=∠BCF,
∵AC=BC,CE=CF,
∴△ACE≌△BCF,
∴∠BFC=∠AEC=90°,
∵∠CFE=45°,
∴∠MFB=45°,
∵∠CFM=∠CBA=45°,
∴C、M、B、F四點(diǎn)共圓,
∴∠BCM=∠MFB=45°,
∴∠ACM=∠BCM=45°,
∵AC=BC,
∴AM=BM.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,四邊形ABCD是菱形,點(diǎn)M、N分別在AB、AD上,且BM=DN,MG∥AD,NF∥AB,點(diǎn)F、G分別在BC、CD上,MG與NF相交于點(diǎn)E;
(1)如圖,求證:四邊形AMEN是菱形;
(2)如圖,連接AC,在不添加任何輔助線的情況下,請直接寫出面積相等的四邊形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】C點(diǎn)的坐標(biāo)為(4,4),A為y軸負(fù)半軸上一動(dòng)點(diǎn),連CA,CB⊥CA交x軸于B.
(1)求OB﹣OA的值;
(2)E在x軸正半軸上,D在y軸負(fù)半軸上,∠DCE=45°,轉(zhuǎn)動(dòng)∠DCE,求線段BE、DE和AD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD中,E為BC邊上一點(diǎn),且AE交DC延長線于F,連接BF,下列關(guān)于面積的結(jié)論中錯(cuò)誤的是( )
A.S△ABF =S△ADEB.S△ABF =S△ADF
C.S△ABF=S□ABCDD.S△ADE=S□ABCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:順次連接矩形A1B1C1D1四邊的中點(diǎn)得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點(diǎn)得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnCnDn.若矩形A1B1C1D1的面積為24,那么四邊形AnBnCnDn的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司的快遞車和貨車每天沿同一條路線往返于A、B兩地,快遞車比貨車多往返一趟.如圖所示,表示貨車距離A地的路程y(單位:h)與所用時(shí)間x(單位h)的圖像,其間在B地裝卸貨物2h.已知快遞車比貨車早1h出發(fā),最后一次返回A地比貨車晚1h.若快遞車往返途中速度不變,且在A、B兩地均不停留,則兩車在往返途中相遇的次數(shù)為________次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店出售書包和文具盒,書包每個(gè)定價(jià)30元,文具盒每個(gè)定價(jià)5元.該店制定了兩種優(yōu)惠方案.
方案1:買一個(gè)書包贈(zèng)送一個(gè)文具盒;
方案2:按總價(jià)的9折(總價(jià)的90%)付款.
某班學(xué)生需購買8個(gè)書包,文具盒若干(不少于8個(gè)),如果設(shè)文具盒數(shù)為x(個(gè)),付款數(shù)為y(元).
(1)分別求出兩種優(yōu)惠方案中y與x之間的關(guān)系式;
(2)購買文具盒多少個(gè)時(shí)兩種方案付款相同;購買文具盒數(shù)大于8個(gè)時(shí),兩種方案中哪一種更省錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com