(本小題滿(mǎn)分12分)如圖, 內(nèi)接于,的平分線(xiàn)與交于點(diǎn),與交于點(diǎn),延長(zhǎng),與的延長(zhǎng)線(xiàn)交于點(diǎn),連接是的中點(diǎn),連結(jié).
(1)判斷與的位置關(guān)系,寫(xiě)出你的結(jié)論并證明;
(2)求證:;
(3)若,求的面積.
(1)猜想:.
證明:如圖,連結(jié)OC、OD.
∵,G是CD的中點(diǎn),
∴由等腰三角形的性質(zhì),有.
(2)證明:∵AB是⊙O的直徑,∴∠ACB=90°.
而∠CAE=∠CBF(同弧所對(duì)的圓周角相等).
在Rt△ACE和Rt△BCF中,
∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF,
∴Rt△ACE≌Rt△BCF (ASA)
∴.
(3)解:如圖,過(guò)點(diǎn)O作BD的垂線(xiàn),垂足為H.則H為BD的中點(diǎn).
∴OH=AD,即AD=2OH.
又∠CAD=∠BADCD=BD,∴OH=OG.
在Rt△BDE和Rt△ADB中,
∵∠DBE=∠DAC=∠BAD,
∴Rt△BDE∽R(shí)t△ADB
∴,即
∴
又,∴.
∴ … ①
設(shè),則,AB=.
∵AD是∠BAC的平分線(xiàn),
∴.
在Rt△ABD和Rt△AFD中,
∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,
∴Rt△ABD≌Rt△AFD(ASA).
∴AF=AB=,BD=FD.
∴CF=AF-AC=
在Rt△BCF中,由勾股定理,得
…②
由①、②,得.
∴.解得或(舍去).
∴
∴⊙O的半徑長(zhǎng)為.
∴
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分12分)如圖所示,在梯形中,,,以為直徑的與相切于.已知,邊比大6.
(1)求邊、的長(zhǎng).
(2)在直徑上是否存在一動(dòng)點(diǎn),使以、、為頂點(diǎn)的三角形與相似?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com