【題目】如圖,,P為射線BC上任意一點點P和點B不重合,分別以AB,AP為邊在內(nèi)部作等邊和等邊,連結(jié)QE并延長交BP于點F,連接EP,若,,則______.
【答案】
【解析】
連接EP,過點E作,由題意可得△AQE≌△ABP,可得QE=BP,,可求,根據(jù)勾股定理可求, BM=EM,EF=BF=2FM,EM=FM,可求BF=EF=4,EM=2,FM=2,由QF=11,EF=4,可得BP=EQ=7,可求MP的長,根據(jù)勾股定理可求EP的長.
解:如圖:連接EP,過點E作.
∵△AEB,△APQ是等邊三角形
∴ AB=AE=BE=4 ,AQ=AP,∠ABE=∠BAE=∠QAP=60°=∠AEB,
∴∠BAP=∠EAQ,且AP=AQ,AB=AE,
∴ △ABP≌△AEQ,
∴EQ=BP,∠AEQ=∠ABC=90°,
∴∠BEF=∠EBF=30°,
∴BF=EF,∠EFM=60°,
∵,
∴∠FEM=30°,
∴EF=2FM =BF,EM=FM,
∵∠EBM=30°,,
∴BE=2EM,BM= EM,
∵EB=4 ,
∴EM=2,BM=6,
∵BF+FM=BM,
∴FM=2,BF=EF=4,
∵QF=EF+EF,
∴EQ=11-4=7,
∴ BP=7,
∴MP=BP –BM =1,
在Rt△EMP中, .
故答案為: .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以O(shè)為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y= (x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k=( )
A.
B.
C.
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一張長為8cm,寬為6cm的矩形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上).則剪下的等腰三角形的面積為______cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為直角邊作等腰三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AB=3cm,則BE= cm;
(3)BE與AD有何位置關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮早晨從家騎車到學校,先上坡后下坡,所行路程y(米)與時間x(分鐘)的關(guān)系如圖所示,若返回時上坡、下坡的速度仍與去時上、下坡的速度分別相同,則小明從學校騎車回家用的時間是________分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為支援雅安災(zāi)區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.
(1)若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?
(2)若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王師傅非常喜歡自駕游,為了解他新買的轎車的耗油情況,將油箱加滿后進行了耗油實驗,得到下表中的數(shù)據(jù):
轎車行駛的路程 | 0 | 100 | 200 | 300 | 400 |
油箱中的剩余油量 | 50 | 42 | 34 | 26 | 18 |
(1)在這個問題中,自變量是 ,因變量是 ;
(2)該轎車油箱的容量為 ,行駛時,估計油箱中的剩余油量為 ;
(3)王師傅將油箱加滿后,駕駛該轎車從地前往地,到達地時油箱中的剩余油量為,請直接寫出兩地之間的距離是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫下列空格完成證明:如圖, EF∥AD , 1 2 , BAC 70 ,求AGD .
解:∵ EF∥AD ,
∴ 2 .( )
∵ 1 2 ,
∴ 1 3.( )
∴ ∥ .( )
∴ BAC 180 .( )
∵ BAC 70 ,
∴ AGD .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(b2)3(b3)4÷(﹣b5)3
(2)()﹣1+(π﹣2018)0﹣(﹣1)2019
(3)(3﹣x)(﹣x+3)﹣x(x+1)
(4)(2a+b﹣5)(2a﹣b﹣5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com