【題目】如圖,點D、E分別在AB、AC上,BECD相交于點O,已知∠B=C,現(xiàn)添加下面的哪一個條件后,仍不能判定ABE≌△ACD(  )

A. AD=AEB. AB=AC

C. BE=CDD. AEB=ADC

【答案】D

【解析】

已知∠B=C,再加上條件∠A=A,根據(jù)全等三角形的判定定理可得添加條件必須是邊相等.

解:已知∠B=C,∠A=A,

若添加AD=AE,可利用AAS定理證明△ABE≌△ACD,故A選項不合題意;

若添加AB=AC,可利用ASA定理證明△ABE≌△ACD,故B選項不合題意;

若添加BE=CD,可利用AAS定理證明△ABE≌△ACD,故C選項不合題意;

若添加∠ADC=BEA,不能證明△ABE≌△ACD,故此選項符合題意;

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD

(1)、求證:四邊形AODE是矩形;(2)、若AB6,∠BCD120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)解方程:2x2﹣7x+6=0;

(2)已知關(guān)于x的方程x2+kx﹣2=0.

求證方程有兩個不相等的實數(shù)根;

若方程的一個根是﹣1,求另一個根及k

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當有n張桌子時,兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:

2)化簡求值.2(5y)[3(3y)] 其中=,y=-2

3解方程

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形OABC在平面直角坐標系中的位置如圖所示,點B的坐標為(3,4),DOA的中點,點EAB上,當△CDE的周長最小時,點E的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(l)操作:如圖1,點O為線段MN的中點,直線PQ與MN相交于點O,請利用圖1畫出一對以點O為對稱中心的全等三角形;根據(jù)上述操作得到的經(jīng)驗完成下列探究活動:

(2)探究一:如圖2,在四邊形ABCD中,AB∥DC,E為BC邊的中點,∠BAE=∠EAF,AF與DC的延長線相交于點F.試探究線段AB與AF,AF,CF之間的等量關(guān)系,并證明你的結(jié)論;

(3)探究二:如圖3 ,DE,BC相交于點E,BA交DE于點A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=5,CF=1,求DF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,放置的一副三角尺,將含45°角的三角尺斜邊中點O為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)30°得到如圖2,連接OB、OD、AD.

(1)求證:AOB≌△AOD;

(2)試判定四邊形ABOD是什么四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四幅圖象近似刻畫兩個變量之間的關(guān)系,請按圖象順序?qū)⑾旅嫠姆N情景與之對應(yīng)排序(

①一輛汽車在公路上勻速行駛(汽車行駛的路程與時間的關(guān)系)

②向錐形瓶中勻速注水(水面的高度與注水時間的關(guān)系)

③將常溫下的溫度計插入一杯熱水中(溫度計的讀數(shù)與時間的關(guān)系)

④一杯越來越?jīng)龅乃?/span>(水溫與時間的關(guān)系)

A. ③②④①B. ③④②①C. ①④②③D. ①②③④

查看答案和解析>>

同步練習冊答案