【題目】如圖,已知直線y=﹣2x+6與拋物線yax2+bx+c相交于A,B兩點(diǎn),且點(diǎn)A14)為拋物線的頂點(diǎn),點(diǎn)Bx軸上

1)求拋物線的解析式;

2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使△POB≌△POC?若存在,求出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=﹣x2+2x+3;(2)存在. P).

【解析】

1)根據(jù)待定系數(shù)法求解析式即可

2)先確定出點(diǎn)C坐標(biāo),然后根據(jù)POB≌△POC建立方程,求解即可

解:(1)由y=﹣2x+60,得x3

B3,0).

A1,4)為頂點(diǎn),

∴設(shè)拋物線的解析為yax12+4,解得a=﹣1

y=﹣(x12+4=﹣x2+2x+3;

2)存在.

當(dāng)x0時(shí),y=﹣x2+2x+33,

C03).

OBOC3,OPOP,

∴當(dāng)∠POB=∠POC時(shí),△POB≌△POC

PMx軸于M,作PNy軸于N,則∠POM=∠PON45°.

PMPN

設(shè)Pm,m),則m=﹣m2+2m+3,解得m

∵點(diǎn)P在第三象限,

P).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將進(jìn)貨單價(jià)為40元的商品按50元售出,能售出500件,如果該商品漲價(jià)1元,其銷售量就要減少10件,為了賺取8000元的利潤(rùn),售價(jià)應(yīng)定為多少元?這時(shí)應(yīng)進(jìn)貨多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC中,∠BAC>90°,點(diǎn)DBC的中點(diǎn),點(diǎn)EAC上,將CDE沿DE折疊,使得點(diǎn)C恰好落在BA的延長(zhǎng)線上的點(diǎn)F處,連結(jié)AD,則下列結(jié)論不一定正確的是(  )

A. AE=EF B. AB=2DE

C. ADFADE的面積相等 D. ADEFDE的面積相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下說(shuō)法合理的是( 。

A. 小明做了3次擲圖釘?shù)膶?shí)驗(yàn),發(fā)現(xiàn)2次釘尖朝上,由此他說(shuō)釘尖朝上的概率是

B. 某彩票的中獎(jiǎng)概率是5%,那么買100張彩票一定有5張中獎(jiǎng)

C. 某射擊運(yùn)動(dòng)員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是

D. 小明做了3次擲均勻硬幣的實(shí)驗(yàn),其中有一次正面朝上,2次正面朝下,他認(rèn)為再擲一次,正面朝上的概率還是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,BC4,tanB2,以AB的中點(diǎn)D為圓心,r為半徑作⊙D,如果點(diǎn)B在⊙D內(nèi),點(diǎn)C在⊙D外,那么r可以。ā 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲、乙兩位運(yùn)動(dòng)員中選出一名參加在規(guī)定時(shí)間內(nèi)的投籃比賽.預(yù)先對(duì)這兩名運(yùn)動(dòng)員進(jìn)行了6次測(cè)試,成績(jī)?nèi)缦拢▎挝唬簜(gè)):

甲:6,12,8,12,10,12;

乙:910,11,10,12,8

1)填表:

平均數(shù)

眾數(shù)

方差

10

   

   

   

10

2)根據(jù)測(cè)試成績(jī),請(qǐng)你運(yùn)用所學(xué)的統(tǒng)計(jì)知識(shí)作出分析,派哪一位運(yùn)動(dòng)員參賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點(diǎn)的坐標(biāo)分別為B0,3)和C0,﹣),點(diǎn)Ax軸正半軸上,且滿足∠BAO30°

1)過(guò)點(diǎn)CCEAB于點(diǎn)E,交AO于點(diǎn)F,點(diǎn)G為線段OC上一動(dòng)點(diǎn),連接GF,將OFG沿FG翻折使點(diǎn)O落在平面內(nèi)的點(diǎn)O處,連接OC,求線段OF的長(zhǎng)以及線段OC的最小值;

2)如圖2,點(diǎn)D的坐標(biāo)為D(﹣1,0),將BDC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得BCAB于點(diǎn)B,將旋轉(zhuǎn)后的BDC沿直線AB平移,平移中的BDC記為BDC,設(shè)直線BCx軸交于點(diǎn)MN為平面內(nèi)任意一點(diǎn),當(dāng)以B、D、MN為頂點(diǎn)的四邊形是菱形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的切線,切點(diǎn)為的直徑,連接.過(guò)點(diǎn)作于點(diǎn),交,連接,

(1)求證:的切線;

(2)求證:的內(nèi)心;

(3),,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案