【題目】已知四邊形ABCD,其中AD//BC,ABBC,將DC沿DE折疊,C落于CBG,且ABGD為長方形(如圖1);再將紙片展開,將AD沿DF折疊,使A點(diǎn)落在DC上一點(diǎn)(如圖2),在兩次折疊過程中,兩條折痕DEDF所成的角為____________.

【答案】45

【解析】分析DDGBCG設(shè)∠EDC=x,∠GDF=y,由折疊的性質(zhì)可知:∠EDG=x,∠ADF=∠FDC=2x+y,由∠ADG=90°,得到2x+y+y=90°,由此即可得到結(jié)論

詳解如圖,DDGBCG設(shè)∠EDC=x,∠GDF=y則∠EDG=x,∠ADF=∠FDC=2x+y.∵∠ADG=90°,∴2x+y+y=90°,∴∠FDE=x+y=45°.故答案為:45°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春天來了,衢江河畔,鳥語花香,柳條搖曳.為給衢州市民提供更好的休閑鍛煉環(huán)境,決定對衢江沿河步行道修建改造.據(jù)了解我市步行道改造工程路線約12千米,若該任務(wù)由甲、乙兩工程隊(duì)先后接力完成,甲工程隊(duì)每天修建0.04千米,乙工程隊(duì)每天修建0.02千米,則兩工程隊(duì)共需修建500天,求甲、乙兩工程隊(duì)分別修建步行道多少千米.

根據(jù)題意,小剛同學(xué)列出了一個(gè)不完整的方程組

1)根據(jù)小剛同學(xué)所列的方程組,請你分別指出未知數(shù)表示的意義.表示    ;表示    

2)小紅同學(xué)的做法是:“設(shè)甲工程隊(duì)修建步行道千米,乙工程隊(duì)修建步行道千米”,請你利用小紅同學(xué)設(shè)的未知數(shù)解決問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具商店銷售功能相同的A、B兩種品牌的計(jì)算器,購買2個(gè)A品牌和3個(gè)B品牌的計(jì)算器共需156購買3個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122

(1)求這兩種品牌計(jì)算器的單價(jià);

(2)學(xué)校開學(xué)前夕該商店對這兩種計(jì)算器開展了促銷活動(dòng),具體辦法如下A品牌計(jì)算器按原價(jià)的八折銷售,B品牌計(jì)算器超出5個(gè)的部分按原價(jià)的七折銷售,設(shè)購買x個(gè)A品牌的計(jì)算器需要y1購買xx>5)個(gè)B品牌的計(jì)算器需要y2,分別求出y1y2關(guān)于x的函數(shù)關(guān)系式;

(3)當(dāng)需要購買50個(gè)計(jì)算器時(shí),買哪種品牌的計(jì)算器更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某氣象站觀察一場沙塵暴從發(fā)生到結(jié)束的全過程,開始時(shí)風(fēng)速按一定的速度勻速增大經(jīng)過荒漠地時(shí),風(fēng)速增大的比較快一段時(shí)間后風(fēng)速保持不變,當(dāng)沙塵暴經(jīng)過防風(fēng)林時(shí)其風(fēng)速開始逐漸減小,最終停止如圖所示是風(fēng)速與時(shí)間之間的關(guān)系的圖象結(jié)合圖象回答下列問題:

(1)沙塵暴從開始發(fā)生到結(jié)束共經(jīng)歷了多長時(shí)間?

(2)從圖象上看,風(fēng)速在哪一個(gè)時(shí)間段增大的比較快增加的速度是多少?

(3)風(fēng)速在哪一時(shí)間段保持不變,經(jīng)歷了多長時(shí)間?

(4)風(fēng)速從開始減小到最終停止風(fēng)速每小時(shí)減小多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀探究:12=,12+22=,12+22+32=,

1)根據(jù)上述規(guī)律,求12+22+32+42+52的值;

2)你能用一個(gè)含有nn為正整數(shù))的算式表示這個(gè)規(guī)律嗎?請直接寫出這個(gè)算式(不計(jì)算);

3)根據(jù)你發(fā)現(xiàn)的規(guī)律,計(jì)算下面算式的值:62+72+82+92+102+112+122+132+142+152

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)EEF∥AB,交BC于點(diǎn)F

1)求證:四邊形DBFE是平行四邊形;

2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBEF是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF,則下列結(jié)論::①△EBF≌△DFC;②四邊形AEFD為平行四邊形;③當(dāng)AB=AC,∠BAC=120°時(shí),四邊形AEFD是正方形.其中正確的結(jié)論是 . (請寫出正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC和△DEF中,將△DEF按要求擺放,使得∠D的兩條邊分別經(jīng)過點(diǎn)B和點(diǎn)C

1)當(dāng)將△DEF如圖1擺放時(shí),若∠A=50°,∠E+F=100°,則∠D= ;∠ABD+ACD

2)當(dāng)將△DEF如圖2擺放時(shí),∠A=m°,∠E+F=n°,請求出∠ABD+ACD的度數(shù)(用含m、n的代數(shù)式表示)

3)能否將△DEF擺放到某個(gè)位置,使得BD、CD同時(shí)平分∠ABC和∠ACB.若能,求出∠A、∠E、∠F滿足的關(guān)系?若不能,請說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館擁有客房90間,經(jīng)營中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與房價(jià)x(元)(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對應(yīng)值如下表:

x(元)

200

240

270

300

y(間)

90

70

55

40


(1)求y與x之間的函數(shù)表達(dá)式;
(2)已知每間入住的客房,賓館每日需支出各種費(fèi)用100元;每日空置的客房,賓館每日需支出60元,當(dāng)房價(jià)為多少元時(shí),賓館當(dāng)日利潤最大?求出最大值.(賓館當(dāng)日利潤=當(dāng)日房費(fèi)收入﹣當(dāng)日支出)

查看答案和解析>>

同步練習(xí)冊答案