【題目】如圖1,在矩形中,,分別以所在的直線為軸、軸,建立如圖所示的平面直角坐標(biāo)系,連接,反比例函數(shù)的圖象經(jīng)過線段的中點(diǎn),并與矩形的兩邊交于點(diǎn)和點(diǎn),直線經(jīng)過點(diǎn)和點(diǎn).
(1)連接、,求的面積;
(2)如圖2,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)—定角度,使得點(diǎn)的對(duì)應(yīng)點(diǎn)好落在軸的正半軸上,連接,作,點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),求的最小值.
【答案】(1);(2)4.
【解析】
(1)連接、,過點(diǎn)D作DP⊥OC,易得:B(3,4),從而得D(1.5,2),進(jìn)而得,即:,E(,4),F(3,1),根據(jù)割補(bǔ)法,即可求出答案;
(2)過點(diǎn)N作NQ⊥OB于點(diǎn)Q,HG⊥OB于點(diǎn)G,易得OH=OB=5,BH=,HG=BC=4,易證OQN~OMB,得NQ=,得到,進(jìn)而得到答案.
(1)連接、,過點(diǎn)D作DP⊥OC,如圖1,
∵在矩形中,,
∴B(3,4),
∵點(diǎn)D是OB的中點(diǎn),
∴DP=BC=OA=2,OP=OC=1.5,即:D(1.5,2),
∵反比例函數(shù)的圖象經(jīng)過線段的中點(diǎn),
∴k=xy=1.5×2=3,即:,
∴,E(,4),F(3,1),
∴BE=3-=,BF=4-1=3,
∴,
∴=;
(2)過點(diǎn)N作NQ⊥OB于點(diǎn)Q,HG⊥OB于點(diǎn)G,如圖2,
∵線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)—定角度,點(diǎn)的對(duì)應(yīng)點(diǎn)好落在軸的正半軸上,
∴OH=OB=,
∴CH= OH-OC=5-3=2,
∴BH=,
∵,
∴HG=BC=4,
∵,
∴BM=BH=,
∵∠NOQ=∠BOM,∠OQN=∠OMB=90°,
∴OQN~OMB,
∴,即:,
∴NQ=,
∴,
∵,
∴,
∴的最小值是:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+(2t﹣2)x+t2﹣2t﹣3與x軸交于A、B兩點(diǎn)(A在B左側(cè)),與y軸交于點(diǎn)C.
(1)如圖1,當(dāng)t=0時(shí),連接AC、BC,求△ABC的面積;
(2)如圖2,在(1)的條件下,若點(diǎn)P為在第四象限的拋物線上的一點(diǎn),且∠PCB+∠CAB=135°,求P點(diǎn)坐標(biāo);
(3)如圖3,當(dāng)﹣1<t<3時(shí),若Q是拋物線上A、C之間的一點(diǎn)(不與A、C重合),直線QA、QB分別交y軸于D、E兩點(diǎn).在Q點(diǎn)運(yùn)動(dòng)過程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有一露天舞臺(tái),縱斷面如圖所示,AC垂直于地面,AB表示樓梯,AE為舞臺(tái)面,樓梯的坡角∠ABC=45°,坡長AB=2m,為保障安全,學(xué)校決定對(duì)該樓梯進(jìn)行改造,降低坡度,擬修新樓梯AD,使∠ADC=30°
(1)求舞臺(tái)的高AC(結(jié)果保留根號(hào))
(2)樓梯口B左側(cè)正前方距離舞臺(tái)底部C點(diǎn)3m處的文化墻PM是否要拆除?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校自主開發(fā)了A書法、B閱讀,C繪畫,D器樂四門選修課程供學(xué)生選擇,每門課程被選到的機(jī)會(huì)均等.
(1)若學(xué)生小玲計(jì)劃選修兩門課程,請(qǐng)寫出她所有可能的選法;
(2)若學(xué)生小強(qiáng)和小明各計(jì)劃選修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行九年級(jí)體育鍛煉考試,現(xiàn)隨機(jī)抽取了部分學(xué)生的成績?yōu)闃颖,根?jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的得分按優(yōu)秀、良好、及格、不及格(分別用A、B、C、D表示)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并繪制成下面兩圖不完整的統(tǒng)計(jì)圖和統(tǒng)計(jì)表:
等級(jí) | 成績(分) | 頻數(shù)(人數(shù)) | 頻率 |
A | 45~50 | 40 | 0.4 |
B | 40~44 | 42 | x |
C | 35~39 | m | 0.12 |
D | 30~34 | 6 | 0.03 |
合計(jì) | 1.00 |
請(qǐng)根據(jù)以如圖表提供的信息,解答下列問題:
(1)m= ,x= ;
(2)在扇形統(tǒng)計(jì)圖中,B等級(jí)所對(duì)應(yīng)的圓心角是 度;
(3)若該校九年級(jí)共有600名學(xué)生參加了體育模板考試,請(qǐng)你估計(jì)成績等級(jí)達(dá)到“優(yōu)秀”的學(xué)生有 人;
(4)小明同學(xué)第一次模擬考試成績?yōu)?0分,第二次成績?yōu)?8分,則小明體育成績提高的百分率是 %.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的8×10網(wǎng)格中,點(diǎn)A,B,C均為網(wǎng)格線的交點(diǎn).
(1)用無刻度的直尺作BC邊上的中線AD(不寫作法,保留作圖痕跡);
(2)①在給定的網(wǎng)格中,以A為位似中心將△ABC縮小為原來的,得到△AB′C′,請(qǐng)畫出△AB′C′.
②填空:tan∠AD′C'= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于點(diǎn).
(1)求點(diǎn)的坐標(biāo)和該拋物線的頂點(diǎn)坐標(biāo);
(2)若該拋物線與軸交于兩點(diǎn),求的面積;
(3)將該拋物線先向左平移個(gè)單位長度,再向上平移個(gè)單位長度,求平移后的拋物線的解析式(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在宣傳“民族團(tuán)結(jié)”活動(dòng)中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對(duì)學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)結(jié)合圖中所給信息,解答下列問題
(1)本次調(diào)查的學(xué)生共有 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)七年級(jí)一班在最喜歡“器樂”的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機(jī)選出兩名同學(xué)參加學(xué)校的器樂隊(duì),請(qǐng)用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有若千間標(biāo)準(zhǔn)客房,當(dāng)房價(jià)為200元/間時(shí),日均入住數(shù)為60間.市場(chǎng)調(diào)查表明,在物價(jià)局核定的每間標(biāo)準(zhǔn)房價(jià)格在160~220元之間(含160元,220元)浮動(dòng)時(shí),每提高10元,日均入住數(shù)減少10間.在不考慮其他因素的前提下,設(shè)標(biāo)準(zhǔn)房的價(jià)格為x元/間,日均入住數(shù)為y間. .
(1) y關(guān)于x的解析式為_ .
(2)當(dāng)標(biāo)準(zhǔn)房的價(jià)格定為多少元時(shí),客房的日營業(yè)額為10500元?
(3)當(dāng)標(biāo)準(zhǔn)房的價(jià)格定為多少元時(shí),客房的日營業(yè)額最大,最大為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com