【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O、D分別為AB、BC的中點(diǎn),做⊙O與AC相切于點(diǎn)E,在AC邊上取一點(diǎn)F,使DF=DO.
⑴求證:DF是⊙O切線;⑵若sinB=,CF=2,求⊙O的半徑.
【答案】(1)證明略;(2)⊙O的半徑 .
【解析】
(1)作OG⊥DF于G.連接OE.先證明△OGD≌△DCF得出OG=CD,再證明四邊形CDOE是平行四邊形,得出OG=OE即可解決問題;
(2)由FA,FD是⊙O的切線,推出FG=FE,設(shè)FG=FE=x,由△OGD≌△DCF(AAS),推出DG=CF=2,推出OD=DF=2+x,由AC=2OD,CE=OD,推出AE=EC=OD=2+x,由sinB=推出∠A=30°,推出,在Rt△DCF中,根據(jù)DF2=CD2+CF2,構(gòu)建方程即可解決問題.
(1)證明:作OG⊥DF于G.連接OE.
∵BD=DC,BO=OA,
∴OD∥AC,
∴∠ODG=∠DFC,
∵∠OGD=∠DCF=90°,OD=DF,
∴△OGD≌△DCF(AAS),
∴OG=CD,
∵AC是⊙O的切線,
∴OE⊥AC,
∴∠AEO=∠C=90°,
∴OE∥BC,
∵OD∥CE,
∴四邊形CDOE是平行四邊形,
∴CD=OE,
∴OG=OE,
∴DF是⊙O的切線.
(2)解:∵FA,FD是⊙O的切線,
∴FG=FE,設(shè)FG=FE=x,
∵△OGD≌△DCF(AAS),
∴DG=CF=2
∴OD=DF=2+x
∵AC=2OD,CE=OD,
∴AE=EC=OD=2+x
∵sinB=.
∴∠B=60°,
∴∠A=30°,
在Rt△DCF中,∵DF2=CD2+CF2,
解得或
即⊙O的半徑是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOC中,∠OAC=90°,AO=AC,OC=2,將△AOC放置于平面直角坐標(biāo)系中,點(diǎn)O與坐標(biāo)原點(diǎn)重合,斜邊OC在x軸上.反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)A.將△AOC沿x軸向右平移2個單位長度,記平移后三角形的邊與反比例函數(shù)圖象的交點(diǎn)為A1,A2.重復(fù)平移操作,依次記交點(diǎn)為A3,A4,A5,A6…分別過點(diǎn)A,A1,A2,A3,A4,A5…作x軸的垂線,垂足依次記為P,P1,P2,P3,P4,P5…若四邊形APP1A1的面積記為S1,四邊形A2P2P3A3的面積記為S2…,則Sn=_____.(用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進(jìn)行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補(bǔ)全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(0,4)、B(2,0),點(diǎn)C、D分別是OA、AB的中點(diǎn),在射線CD上有一動點(diǎn)P,若△ABP是直角三角形,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一款產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,關(guān)于銷售單價,日銷售量的幾組對應(yīng)值如表:(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價)
銷售單價x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個) | 175 | 125 | 75 | m |
(1)求y關(guān)于x的函數(shù)解析式和m的值;
(2)公司計劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,預(yù)計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關(guān)系.若想實(shí)現(xiàn)銷售單價為90元時,日銷售利潤不低于3750元的銷售目標(biāo),該產(chǎn)品的成本單價應(yīng)不超過多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1為伸縮衣架,因其便捷性,在生活中應(yīng)用廣泛,該衣架由4根長為26cm的矩形木條和4根長為14cm的矩形木條組成,木條寬度都為2cm,圖2是它收縮時的狀態(tài),圓形掛鉤⊙A,⊙B,⊙C,⊙D,⊙G,⊙H,⊙I,⊙J與它所在矩形三邊相切,⊙E,⊙F與它所在矩形兩邊相切,圓心表示兩根木條的鏈接點(diǎn),點(diǎn)E是線段BH,AI的中點(diǎn),點(diǎn)F是線段BJ,CI的中點(diǎn).
(1)這種衣架能伸縮,依據(jù)的數(shù)學(xué)原理是_____.
(2)當(dāng)這個伸縮衣架拉伸到最長時,DG=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近日,全省各地市的2019年初中畢業(yè)升學(xué)體育考試工作正依照某省教育廳的具體要求在有條不紊的進(jìn)行當(dāng)中,某中學(xué)在正式考試前,為了讓同學(xué)們在中招體育考試中獲得理想成績,同時為了了解學(xué)生的當(dāng)前水平,按批次進(jìn)行了模擬考試,并隨機(jī)抽取若干名學(xué)生問卷調(diào)查,現(xiàn)將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表:
組別 | 成績范圍x(分) | 頻數(shù)(人數(shù)) |
A | 60<x≤70 | 54 |
B | 50<x≤60 | m |
C | 40<x≤50 | n |
D | 30<x≤40 | 6 |
(1)這次調(diào)查的總?cè)藬?shù)有 人,表中的m= ,n= ;
(2)扇形統(tǒng)計圖中B組對應(yīng)的圓心角為 °;
(3)請補(bǔ)全頻數(shù)分布直方圖;
(4)若該校九年級共有學(xué)生2700名,且都參加了正式的初中畢業(yè)升學(xué)體育考試,小華也參加了這次考試并得了67分,若規(guī)定60分以上為優(yōu)秀,體育老師想要在獲得優(yōu)秀的學(xué)生中隨機(jī)抽出1名,作為學(xué)生代表向?qū)W弟學(xué)妹們傳授經(jīng)驗(yàn),求抽到小華的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com