【題目】兩個警察抓兩個小偷,目擊者說:兩個小偷分別躲藏在六個房間中的兩間,但不知道他們到底躲藏在哪兩間。而如果警察沖進了無人的房間,那么小偷就會趁機逃跑。如果兩個警察隨機地沖進兩個房間抓小偷,(1)至少能抓獲一個小偷的概率是多少?(2)兩個小偷全部抓獲的概率是多少?請簡單說明理由.
【答案】(1);(2).
【解析】
試題(1)設(shè)房間號為1、2、3、4、5、6,其中假設(shè)兩個小偷分別躲藏1、2,再用列舉法展示所有15種等可能的結(jié)果數(shù),然后根據(jù)概率公式求解;
(2)找出兩個小偷全部抓獲的結(jié)果數(shù),然后根據(jù)概率公式求解.
試題解析:(1)設(shè)房間號為1、2、3、4、5、6,其中假設(shè)兩個小偷分別躲藏1、2,任意取兩個,共有15種等可能的結(jié)果數(shù):1、2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6;其中至少能抓獲一個小偷占9種,所以至少能抓獲一個小偷的概率=.
(2)兩個小偷全部抓獲的結(jié)果數(shù)占1種,即1,2,所以兩個小偷全部抓獲的概率=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,連接AC,BC.點P是第四象限內(nèi)拋物線上的一個動點,點P的橫坐標(biāo)為m,過點P作PM⊥x軸,垂足為點M,PM交BC于點Q,過點P作PE∥AC交x軸于點E,交BC于點F.
(1)求A,B,C三點的坐標(biāo);
(2)試探究在點P運動的過程中,是否存在這樣的點Q,使得以A,C,Q為頂點的三角形是等腰三角形.若存在,請直接寫出此時點Q的坐標(biāo);若不存在,請說明理由;
(3)請用含m的代數(shù)式表示線段QF的長,并求出m為何值時QF有最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△AOB中,C,D分別是OA、OB邊上的點,將△OCD繞點O順時針旋轉(zhuǎn)到△OC′D′.如圖,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點.求證:
(1)AC′=BD′;
(2)AC′⊥BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AC、BD相交于點O,OE⊥BC于E,連接DE交OC于點F,作FG⊥BC于G.
(1)說明點G是線段BC的一個三等分點;
(2)請你依照上面的畫法,在原圖上畫出BC的一個四等分點(保留作圖痕跡,不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著某市養(yǎng)老機構(gòu)(養(yǎng)老機構(gòu)指社會福利院、養(yǎng)老院、社區(qū)養(yǎng)老中心等)建設(shè)穩(wěn)步推進,擁有的養(yǎng)老床位不斷增加.
(1)該市的養(yǎng)老床位數(shù)從年底的萬個增長到年底的萬個,求該市這兩年(從年底到年底)擁有的養(yǎng)老床位數(shù)的平均年增長率;
(2)若該市某社區(qū)今年準(zhǔn)備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共間,這三類養(yǎng)老專用房間分別為單人間(個養(yǎng)老床位),雙人間(個養(yǎng)老床位),三人間(個養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在至之間(包括和),且雙人間的房間數(shù)是單人間的倍,設(shè)規(guī)劃建造單人間的房間數(shù)為.
①若該養(yǎng)老中心建成后可提供養(yǎng)老床位個,求的值;
②直接寫出:該養(yǎng)老中心建成后最多提供養(yǎng)老床位 個;最少提供養(yǎng)老床位 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,花叢中有一路燈桿AB. 在燈光下,小明在D點處的影長DE=3米,沿BD方向行走到達G點,DG=5米,這時小明的影長GH=5米. 如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結(jié)EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學(xué)習(xí)經(jīng)驗,他想到了方程與函數(shù)的關(guān)系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標(biāo)即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標(biāo)即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標(biāo)﹣1和3即為x2﹣2x﹣3=0的解.
根據(jù)以上方程與函數(shù)的關(guān)系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標(biāo),即可知方程x3+2x2﹣x﹣2=0的解.
佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數(shù)的圖象.
x | … | ﹣3 | ﹣ | ﹣2 | ﹣ | ﹣1 | ﹣ | 0 | 1 | 2 | … | ||
y | … | ﹣8 | ﹣ | 0 | m | ﹣ | ﹣2 | ﹣ | 0 | 12 | … |
(1)直接寫出m的值,并畫出函數(shù)圖象;
(2)根據(jù)表格和圖象可知,方程的解有 個,分別為 ;
(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com