【題目】如圖,A,B兩地之間有條河,原來從A地到B地需要經(jīng)過橋DC,沿折線ADCB到達,現(xiàn)在新建了橋EF,可直接沿直線ABA地到達B地.已知BC=11km,∠A=45°,∠B=37°,橋DCAB平行,橋DC與橋EF的長相等.

1)求點D到直線AB的距離;

2)現(xiàn)在從A地到B地可比原來少走多少路程?

(結(jié)果保留小數(shù)點后一位.參考數(shù)據(jù):1.41,sin37°≈0.60,cos37°≈0.80).

【答案】(1)6.60;(2)4.9

【解析】

1)過點DDHABH,DGCBABG,根據(jù)平行四邊形的判定得出DCBG為平行四邊形,在RtDGH中,根據(jù)DH=DGsin37,即可求出點D到直線AB的距離;
2)根據(jù)(1)先求出GHADAH的長,再根據(jù)兩條路線路程之差為AD+DG-AG,代值計算即可得出答案.

解:(1)如圖,過點DDHABH,DGCBABG

DCAB,

∴四邊形DCBG為平行四邊形.

DC=GBGD=BC=11

RtDGH中,

DH=DGsin37°≈11×0.60=6.60

∴點D到直線AB的距離是6.60km;

2)根據(jù)(1)得:

GH=DGcos37°≈11×0.80≈8.80,

RtADH中,

AD=DH≈1.41×6.60≈9.31

AH=DH≈6.60

∵兩條路線路程之差為AD+DGAG,

AD+DGAG=9.31+11)﹣(6.60+8.80≈4.9km).

即現(xiàn)在從A地到B地可比原來少走約4.9km

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角△ABC中,∠C=90°,AC15BC20,點DAB邊上一動點,若AD的長度為m,且m的范圍為0m9,在ACBC邊上分別取兩點E、F,滿足EDAB,FEED

1)求DE的長度;(用含m的代數(shù)式表示)

2)求EF的長度;(用含m的代數(shù)式表示)

3)請根據(jù)m的不同取值,探索過D、E、F三點的圓與△ABC三邊交點的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A(a,﹣)在直線y=﹣上,ABy軸,且點B的縱坐標為1,雙曲線y經(jīng)過點B

(1)a的值及雙曲線y的解析式;

(2)經(jīng)過點B的直線與雙曲線y的另一個交點為點C,且△ABC的面積為

①求直線BC的解析式;

②過點BBDx軸交直線y=﹣于點D,點P是直線BC上的一個動點.若將△BDP以它的一邊為對稱軸進行翻折,翻折前后的兩個三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一輪船在A處測得南偏東30°方向上有一小島P,輪船沿正南方向航行至B處,測得小島P在南偏東45°方向上,按原方向再航行10海里至C處,測得小島P在正東方向上,則A,B之間的距離是( )

A. 10 海里 B. (1010)海里

C. 10海里 D. (1010)海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的一條弦,點C是O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與O交于G、H兩點,若O的半徑為10,則GE+FH的最大值為( 。

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半徑為1的扇形AOB中,∠AOB90°,點C是弧AB上的一個動點(不與點A、B重合)ODBCOEAC,垂足分別為D、E

1)當時,求線段OD的長;

2)在△DOE中是否存在長度保持不變的邊?如果存在,請指出是哪條邊,并求其長度;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設(shè)CP=t(0<t<10).

(1)請直接寫出B、C兩點的坐標及拋物線的解析式;

(2)過點PPEBC,交拋物線于點E,連接BE,當t為何值時,∠PBE=OCD?

(3)點Qx軸上的動點,過點PPMBQ,交CQ于點M,作PNCQ,交BQ于點N,當四邊形PMQN為正方形時,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)ykx與反比例函數(shù)yx0)的圖象有個交點A,ABx軸于點B.平移正比例函數(shù)ykx的圖象,使其經(jīng)過點B2,0),得到直線l,直線ly交于點C0,﹣3

1)求km的值;

2)點M是直線OA上一點過點MMNAB,交反比例函數(shù)yx0)的圖象于點N,若線段MN3,求點M的坐標.

查看答案和解析>>

同步練習冊答案