【題目】如圖,的半徑為交于點(diǎn)D,點(diǎn)C是上一動(dòng)點(diǎn),以BC為邊向下作等邊.
當(dāng)點(diǎn)C運(yùn)動(dòng)到時(shí),
求證:BC與相切;
試判斷點(diǎn)A是否在上,并說明理由.
設(shè)的面積為S,求S的取值范圍.
【答案】(1)①詳見解析;②是,詳見解析(2)
【解析】
(1)①連接CD,根據(jù)等邊三角形性質(zhì),得為OB邊的中線且,故
為直角三角形,;②連接OA,證≌,得,故點(diǎn)A在上;
(2)當(dāng)點(diǎn)C與點(diǎn)D重合時(shí),面積最小, ;當(dāng)點(diǎn)C運(yùn)動(dòng)至AO的延長線時(shí),的面積最大,,可得S取值范圍.
證明:連接CD,
,
為等邊三角形,
,
,
為OB邊的中線且,
為直角三角形,,
,
與相切;
解:點(diǎn)A在上;
連接OA,
,
為等邊三角形,
,
,
在與中,
,
≌,
,
點(diǎn)A在上;
解:當(dāng)點(diǎn)C與點(diǎn)D重合時(shí),面積最小,
,
當(dāng)點(diǎn)C運(yùn)動(dòng)至AO的延長線時(shí),的面積最大,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l的表達(dá)式為y=x,點(diǎn)A1的坐標(biāo)為(1,0),以O(shè)為圓心,OA1為半徑畫弧,與直線l交于點(diǎn)C1,記長為m1;過點(diǎn)A1作A1B1垂直x軸,交直線l于點(diǎn)B1,以O(shè)為圓心,OB1為半徑畫弧,交x軸于C2,記的長為m2;過點(diǎn)B1作A2B1垂直l,交x軸于點(diǎn)A2,以O(shè)為圓心,OA2為半徑畫弧,交直線l于C3,記的長為m3…按照這樣規(guī)律進(jìn)行下去,mn的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求拋物線的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)條件下:
(1)P為y軸右側(cè)拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)P作PQ⊥PA交y軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與△ACB相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(2)設(shè)E為線段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EA以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止,當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水壩的橫截面是梯形ABCD,現(xiàn)測(cè)得壩頂DC=4 m,坡面AD的坡度i為1:1,坡面BC的坡角β為60°,壩高3m,()求:
(1)壩底AB的長(精確到0.1);
(2)水利部門為了加固水壩,在保持壩頂CD不變的情況下降低AD的坡度(如圖),使新坡面DE的坡度i為,原水壩底部正前方2.5m處有一千年古樹,此加固工程對(duì)古樹是否有影響?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(8,0)和點(diǎn)B(0,6),點(diǎn)C是AB的中點(diǎn),點(diǎn)P在折線AOB上,直線CP截△AOB,所得的三角形與△AOB相似,那么點(diǎn)P的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x+m=0,有兩個(gè)不相等的實(shí)數(shù)根.
⑴求實(shí)數(shù)m的最大整數(shù)值;
⑵在⑴的條下,方程的實(shí)數(shù)根是x1,x2,求代數(shù)式x12+x22-x1x2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+3,截取該函數(shù)圖象在0≤x≤4間的部分記為圖象G,設(shè)經(jīng)過點(diǎn)(0,t)且平行于x軸的直線為l,將圖象G在直線l下方的部分沿直線l翻折,圖象G在直線上方的部分不變,得到一個(gè)新函數(shù)的圖象M,若函數(shù)M的最大值與最小值的差不大于5,則t的取值范圍是( 。
A.﹣1≤t≤0B.﹣1≤tC.D.t≤﹣1或t≥0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=x的圖像與反比例函數(shù)y=的圖像交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(6,a).
(1)求反比例函數(shù)的表達(dá)式;
(2)已知點(diǎn)C(b,4)在反比例函數(shù)y=的圖像上,點(diǎn)P在x軸上,若△AOC的面積等于△AOP的面積的兩倍,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠ABC=90°
(1)如圖1,分別過A、C兩點(diǎn)作經(jīng)過點(diǎn)B的直線MN的垂線,垂足分別為M、N.
①求證:△AMB∽△BNC;
②若△AMB∽△ABC,求證:AC=AM+CN;
(2)如圖2,點(diǎn)D是CA延長線上的一點(diǎn),DE⊥EB,AE=AB,AD:BC:CA=3:3:5,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com