若點(m,m-2)在第四象限,則m的取值范圍是(   )。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知菱形ABCD的邊長為1.∠ADC=60°,等邊△AEF兩邊分別交邊DC、CB于點E、F.
(1)特殊發(fā)現(xiàn):如圖1,若點E、F分別是邊DC、CB的中點.求證:菱形ABCD對角線AC、BD交點O即為等邊△AEF的外心;
(2)若點E、F始終分別在邊DC、CB上移動.記等邊△AEF的外心為點P.
①猜想驗證:如圖2.猜想△AEF的外心P落在哪一直線上,并加以證明;
②拓展運用:如圖3,當(dāng)△AEF面積最小時,過點P任作一直線分別交邊DA于點M,交邊DC的延長線于點N,試判斷
1
DM
+
1
DN
是否為定值?若是,請求出該定值;若不是,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點C(4,0)是正方形AOCB的一個頂點,直線PC交AB于點E,若E是AB的中點.
(1)求點E的坐標(biāo);
(2)求直線PC的解析式;
(3)若點P是直線PC在第一象限的一個動點,當(dāng)點P運動到什么位置時,圖中存在與△AOP全等的三角形?請畫出所有符合條件的圖形,說明全等的理由,并求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公園有一滑梯,橫截面如圖所示,AB表示樓梯,BC表示平臺,CD表示滑道.若點E,精英家教網(wǎng)F均在線段AD上,四邊形BCEF是矩形,且sin∠BAF=
23
,BF=3米,BC=1米,CD=6米.
求:(1)∠D的度數(shù);
(2)線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形AOCB的邊長為4,點C在x軸上,點A在y軸上,E是AB的中點.
(1)直接寫出點C、E的坐標(biāo);
(2)求直線EC的解析式;
(3)若點P是直線EC在第一象限的一個動點,當(dāng)點P運動到什么位置時,圖中存在與△AOP全等的三角形?請畫出所有符合條件的圖形,說明全等的理由,并求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
點A、B在數(shù)軸上分別表示兩個數(shù)a、b,A、B兩點間的距離記為|AB|,O表示原點.當(dāng)A、B兩點中有一點在原點時,不妨設(shè)點A為原點,如圖1,則|AB|=|OB|=|b|=|a-b|;當(dāng)A、B兩點都不在原點時,
①如圖2,若點A、B都在原點的右邊時,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如圖3,若點A、B都在原點的左邊時,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;
③如圖4,若點A、B在原點的兩邊時,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.
回答下列問題:
(1)綜上所述,數(shù)軸上A、B兩點間的距離為|AB|=
|a-b|
|a-b|

(2)若數(shù)軸上的點A表示的數(shù)為2,點B表示的數(shù)為-3,則A、B兩點間的距離為
5
5

(3)若數(shù)軸上的點A表示的數(shù)為x,點B表示的數(shù)為-1,則|AB|=
|x+1|
|x+1|
,若|AB|=3,則x的值為
2或-4
2或-4
;
(4)代數(shù)式|x-2|+|x+3|的最小值為
5
5
,取得最小值時x的取值范圍是
-3≤x≤2
-3≤x≤2

(5)滿足|x+1|+|x+4|>3的x的取值范圍是
x<-4或x>-1
x<-4或x>-1

查看答案和解析>>

同步練習(xí)冊答案