(本題滿分10分)如圖所示,過(guò)點(diǎn)F(0,1)的直線y=kx+b與拋物線y= x2交于M(x1,y1)和N(x2,y2)兩點(diǎn)(其中x1<0,x2<0).
(1)求b的值.
(2)求x1•x2的值
(3)分別過(guò)M、N作直線l:y=-1的垂線,垂足分別是M1、N1,判斷△M1FN1的形狀,并證明你的結(jié)論.
(4) 對(duì)于過(guò)點(diǎn)F的任意直線MN,是否存在一條定直線m,使m與以MN為直徑的圓相切.如果有,請(qǐng)求出這條直線m的解析式;如果沒(méi)有,請(qǐng)說(shuō)明理由.
解:(1)把點(diǎn)F(0,1)坐標(biāo)代入y=kx+b中得b=1. ……(1分)
(2)由y= x2和y=kx+1得 x2-kx-1=0化簡(jiǎn)得
x1=2k-2 x2=2k+2 x1·x2=-4 ……(3分)[
(3)△M1FN1是直角三角形(F點(diǎn)是直角頂點(diǎn)).理由如下:設(shè)直線l與y軸的交點(diǎn)是F1
FM12=FF12+M1F12=x12+4 FN12=FF12+F1N12=x22+4
M1N12=(x1-x2)2=x12+x22-2x1x2=x12+x22+8
∴FM12+FN12=M1N12∴△M1FN1是以F點(diǎn)為直角頂點(diǎn)的直角三角形. ……(6分)
(4)符合條件的定直線m即為直線l:y=-1.
過(guò)M作MH⊥NN1于H,MN2=MH2+NH2=(x1-x2)2+(y1-y2)2=(x1-x2)2+[(kx1+1)-(kx2+1)]2=(x1-x2)2+k2(x1-x2)2=(k2+1)(x1-x2)2=(k2+1)(4 )2=16(k2+1)2
∴MN=4(k2+1)
分別取MN和M1N1的中點(diǎn)P,P1,
PP1= (MM1+NN1)= (y1+1+y2+1)= (y1+y2)+1= k(x1+x1)+2=2k2+2=2(k2+1) ∴PP1= MN
即線段MN的中點(diǎn)到直線l的距離等于MN長(zhǎng)度的一半.
∴以MN為直徑的圓與l相切. ……(10分)
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分10分)
如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標(biāo)系中,動(dòng)點(diǎn)M、N以每秒1個(gè)單位的速度分別從點(diǎn)A、C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動(dòng),點(diǎn)N沿CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了t秒時(shí),過(guò)點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為 ;用含t的式子表示點(diǎn)P的坐標(biāo)為 ;(3分)
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時(shí),S有最大值?(4分)
(3)試探究:當(dāng)S有最大值時(shí),在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省泰州市中考數(shù)學(xué)試卷 題型:解答題
(本題滿分10分)如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長(zhǎng)線與BC相交于點(diǎn)N。
(1)點(diǎn)N是線段BC的中點(diǎn)嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com