若關(guān)于x的一元二次方程有實(shí)數(shù)根x1,x2,且x1≠x2,有下列結(jié)論:
①x1=1,x2=2; ②;
③二次函數(shù)y=的圖象與x軸交點(diǎn)的坐標(biāo)為(1,0)和(2,0)。
其中,正確結(jié)論的個(gè)數(shù)是【 】
A.0 B.1 C.2 D.3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
實(shí)數(shù)x、y、z、w滿足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)(min)成反比例關(guān)系,直至水溫降至20℃,飲水機(jī)關(guān)機(jī)。飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序。若在水溫為20℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在下午第一節(jié)下課時(shí)(14:30)能喝到健康衛(wèi)生和水溫適中的水(水沸騰后水溫在20℃和50℃之間,含20℃和50℃),則接通電源的時(shí)間最晚是當(dāng)天下午的 之間。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,拋物線的頂點(diǎn)為D(﹣1,4),與軸交于點(diǎn)C(0,3),與軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。
(1)求拋物線的解析式;
(2)連接AC,CD,AD,試證明△ACD為直角三角形;
(3)若點(diǎn)E在拋物線上,EF⊥x軸于點(diǎn)F,以A、E、F為頂點(diǎn)的三角形與△ACD相似,試求出所有滿足條件的點(diǎn)E的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線y1=﹣2x2+2,直線y2=﹣2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較大值記為M;若y1=y2,記M=y1=y2。例如:當(dāng)x=﹣1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=4。下列判斷:
①當(dāng)x<0時(shí),y1>y2;
②當(dāng)x>0時(shí),x值越大,M值越。
③當(dāng)x≥0時(shí),使得M大于2的x值不存在;
④使得M=1的x值是。
其中正確的有【 】
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖表示一騎自行車(chē)者和一騎摩托車(chē)者沿相同路線由甲地到乙地行駛過(guò)程的函數(shù)圖象(分別為正比例函數(shù)和一次函數(shù)).兩地間的距離是80千米.請(qǐng)你根據(jù)圖象回答或解決下面的問(wèn)題:
(1)誰(shuí)出發(fā)的較早?早多長(zhǎng)時(shí)間?誰(shuí)到達(dá)乙地較早?早到多長(zhǎng)時(shí)間?
(2)兩人在途中行駛的速度分別是多少?
(3)請(qǐng)你分別求出表示自行車(chē)和摩托車(chē)行駛過(guò)程的函數(shù)解析式(不要求寫(xiě)出自變量的取值范圍);
(4)指出在什么時(shí)間段內(nèi)兩車(chē)均行駛在途中(不包括端點(diǎn));在這一時(shí)間段內(nèi),請(qǐng)你分別按下列條件列出關(guān)于時(shí)間x的方程或不等式(不要化簡(jiǎn),也不要求解):①自行車(chē)行駛在摩托車(chē)前面;②自行車(chē)與摩托車(chē)相遇;③自行車(chē)行駛在摩托車(chē)后面.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,五邊形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=135°,AB=AE=2,DE=4,則五邊形ABCDE的面積等于 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
根據(jù)要求,解答下列問(wèn)題:
(1)已知直線l1的函數(shù)表達(dá)式為,直接寫(xiě)出:①過(guò)原點(diǎn)且與l1垂直的直線l2的函數(shù)表達(dá)式;②過(guò)點(diǎn)(1,0)且與l1垂直的直線l2的函數(shù)表達(dá)式;
(2)如圖,過(guò)點(diǎn)(1,0)的直線l4向上的方向與x軸的正方向所成的角為600,①求直線l4的函數(shù)表達(dá)式;②把直線l4繞點(diǎn)(1,0)按逆時(shí)針?lè)较蛐D(zhuǎn)900得到的直線l5,求直線l5的函數(shù)表達(dá)式;
(3)分別觀察(1)(2)中的兩個(gè)函數(shù)表達(dá)式,請(qǐng)猜想:當(dāng)兩直線垂直時(shí),它們的函數(shù)表達(dá)式中自變量的系數(shù)之間有何關(guān)系?請(qǐng)根據(jù)猜想結(jié)論直接寫(xiě)出過(guò)點(diǎn)(1,1)且與直線垂直的直線l6的函數(shù)表達(dá)式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com