【題目】如圖1,四邊形中,,,邊上的中線,過點(diǎn)垂足為,交線段于點(diǎn),交于點(diǎn),連接

1)求證:;

2)探索線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)當(dāng)等于多少度時(shí),點(diǎn)恰好為中點(diǎn)?

【答案】1)見解析;(2,見解析;(3105°

【解析】

1)根據(jù)等腰直角三角形的性質(zhì)得到∠DCB=DBC=CDM=BDM=45°,DMBC,利用ASA定理證明△ABD≌△NCD;

2)根據(jù)全等三角形的性質(zhì)得到AD=ND,AB=NC,證明△FDA≌△FDN,得到AF=FN,結(jié)合圖形證明即可;

3)連接AN,BN,根據(jù)線段垂直平分線的性質(zhì)、等邊三角形的判定定理得到△ABN是等邊三角形,得到∠BAN=60°,證明△ADN是等腰直角三角形,得到∠DAN=45°,計(jì)算即可.

(1) 證明:

(2)

(3):如圖2,連接AN, BN,

CEABEAB中點(diǎn),

∴直線CEAB的垂直平分線,

AN=BN,

AF=FN,AD=DN,

∴直線BDAN的垂直平分線,

AB=NB,

AB=AN= BN,

∴△ABN是等邊三角形,

∴∠BAN=60°,

AD//BC, DMBC,

ADDN,

AD=DN,

∴△ADN是等腰直角三角形 ,

∴∠DAN=45°,

∴∠BAD=60°+45°=105°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樂樂發(fā)現(xiàn)等腰三角形一腰上的高與另一腰的夾角為40°,則這個(gè)等腰三角形底角的度數(shù)為( )

A.50°B.65°C.65°或25°D.50°或40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,且通過兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A'B'C',點(diǎn)C的對(duì)應(yīng)點(diǎn)是直線上的格點(diǎn)C'

(1)畫出△A'B'C';

(2)BC上找一點(diǎn)P,使AP平分△ABC的面積;

(3)試在直線l上畫出所有的格點(diǎn)Q,使得由點(diǎn)A'、B'C'、Q四點(diǎn)圍成的四邊形的面積為9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱軸為x=1,B(3,0),C(0,﹣3),

(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對(duì)稱軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3)平行于x軸的一條直線交拋物線于M、N兩點(diǎn),若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.

(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD平分∠BAC,EG∥AD,找出圖中的等腰三角形,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=FDA延長(zhǎng)線上一點(diǎn),GCF上一點(diǎn),且ACG=AGC,GAF=F=20°,則AB=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請(qǐng)你從中選取兩個(gè)條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案