【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.
【答案】1.5
【解析】
連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF =∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.
連接DF,如圖所示:
在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,
∵AD=AC=3,AF⊥CD,
∴∠CAF =∠DAF,BD=AB-AD=2,
在△ADF和△ACF中,
∴△ADF≌△ACF(SAS),
∴∠ADF=∠ACF=90°,CF=DF,
∴∠BDF=90°,
設(shè)CF=DF=x,則BF=4-x,
在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,
即x2+22=(4-x)2,
解得:x=1.5;
∴CF=1.5;
故答案為:1.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.
(1)畫出△ABC向右平移4個單位后得到的△A1B1C1;
(2)圖中AC與A1C1的關(guān)系是: _____________.
(3)畫出△ABC的AB邊上的高CD;垂足是D;
(4)圖中△ABC的面積是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA⊥OB,引射線OC(點C在∠AOB外),OD平分∠BOC,OE平分∠AOD.
(1)若∠BOC=40°,請依題意補全圖,并求∠BOE的度數(shù);
(2)若∠BOC=α(0°<α<180°),請直接寫出∠BOE的度數(shù)(用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(1,2)在反比例函數(shù)y= (x>0)上,B為反比例函數(shù)圖象上一點,不與A重合,當(dāng)以O(shè)B為直徑的圓經(jīng)過A點,點B的坐標為( )
A.(2,1)
B.(3, )
C.(4,0.5)
D.(5,0.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點C和點D處,CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,試問:圖書室E應(yīng)該建在距點A多少km處,才能使它到兩所學(xué)校的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有除顏色外其余均相同的5個小球,其中紅球3個(記為A1 , A2 , A3),黑球2個(記為B1 , B2).
(1)若先從袋中取出m(m>0)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,填空:①若A為必然事件,則m的值為
②若A為隨機事件,則m的取值為
(2)若從袋中隨機摸出2個球,正好紅球、黑球各1個,用樹狀圖或列表法求這個事件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD和△ACE分別是等邊三角形,AB≠AC,下列結(jié)論中正確有( )個.(1)DC=BE,(2)∠BOD=60°,(3)∠BDO=∠CEO,(4)AO平分∠DOE,(5)AO平分∠BAC.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AC為⊙O的直徑,PA為⊙O的切線,切點為A,B為⊙O上一點,且BC∥PO.
(1)求證:PB為⊙O的切線;
(2)若⊙O的半徑為1,PA=3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,BD是矩形ABCD的對角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點,連接AB',C'D,AD',BC',如圖②.
(1)求證:四邊形AB'C'D是菱形;
(2)四邊形ABC'D′的周長為;
(3)將四邊形ABC'D'沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com