【題目】垃圾分類是對垃圾傳統(tǒng)收集處理方式的改變,是對垃圾進(jìn)行有效處理的一種科學(xué)管理方法.為了增強(qiáng)同學(xué)們垃圾分類的意識,某班舉行了專題活動,對200件垃圾進(jìn)行分類整理,得到下列統(tǒng)計圖表,請根據(jù)統(tǒng)計圖表回答問題:(其中A:可回收垃圾;B:廚余垃圾;C:有害垃圾;D:其它垃圾).
類別 | 件數(shù) |
A | 70 |
B | b |
C | c |
D | 48 |
(1)________;________;
(2)補(bǔ)全圖中的條形統(tǒng)計圖;
(3)有害垃圾C在扇形統(tǒng)計圖中所占的圓心角為多少?
【答案】(1)35;62;(2)見解析;(3)
【解析】
(1)根據(jù)題意,結(jié)合條形統(tǒng)計圖和扇形統(tǒng)計圖,部分?jǐn)?shù)量=總數(shù)部分的百分比,即可求出、的值;
(2)直接根據(jù)數(shù)據(jù)畫圖即可;
(3)由已知數(shù)據(jù)可以求出C的百分比,乘以即可求得圓心角的度數(shù).
(1)根據(jù)題意,部分?jǐn)?shù)量=總數(shù)部分的百分比,由此關(guān)系式,可得:(件),
,所以,
,
又由圖可知,,
故答案為:35;62.
(2)補(bǔ)全圖形如下:
(3)由(1)可知:(件),
,
答:有害垃圾C在扇形統(tǒng)計圖中所占的圓心角為,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“創(chuàng)建文明校園”活動周,活動周設(shè)置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學(xué)生選一個主題參與.為了解活動開展情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)本次隨機(jī)調(diào)查的學(xué)生人數(shù)是 人;
(2)請你補(bǔ)全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角等于 度;
(4)小明和小華各自隨機(jī)參加其中的一個主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時選中“文明禮儀”或“生態(tài)環(huán)境”主題的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠制作兩種手工藝品,每天每件獲利比多105元,獲利30元的與獲利240元的數(shù)量相等.
(1)制作一件和一件分別獲利多少元?
(2)工廠安排65人制作,兩種手工藝品,每人每天制作2件或1件.現(xiàn)在在不增加工人的情況下,增加制作.已知每人每天可制作1件(每人每天只能制作一種手工藝品),要求每天制作,兩種手工藝品的數(shù)量相等.設(shè)每天安排人制作,人制作,寫出與之間的函數(shù)關(guān)系式.
(3)在(1)(2)的條件下,每天制作不少于5件.當(dāng)每天制作5件時,每件獲利不變.若每增加1件,則當(dāng)天平均每件獲利減少2元.已知每件獲利30元,求每天制作三種手工藝品可獲得的總利潤(元)的最大值及相應(yīng)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點A,與y軸交點C,拋物線過A,C兩點,與x軸交于另一點B.
(1)求拋物線的解析式.
(2)在直線AC上方的拋物線上有一動點E,連接BE,與直線AC相交于點F,當(dāng)時,求的值.
(3)點N是拋物線對稱軸上一點,在(2)的條件下,若點E位于對稱軸左側(cè),在拋物線上是否存在一點M,使以M,N,E,B為頂點的四邊形是平行四邊形?若存在,直接寫出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)六七年級有350名同學(xué)去春游,已知2輛A型車和1輛B型車可以載學(xué)生100人;1輛A型車和2輛B型車可以載學(xué)生110人.
(1)A、B型車每輛可分別載學(xué)生多少人?
(2)若租一輛A需要100元,一輛B需120元,請你設(shè)計租車方案,使得恰好運送完學(xué)生并且租車費用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:如何將一個長為17,寬為1的長方形經(jīng)過剪一剪,拼一拼,形成一個正方形.(下列所有圖中每個小方格的邊長都為1,剪拼過程中材料均無剩余)
問題探究:我們從長為5,寬為1的長方形入手.
(1)如圖①是一個長為5,寬為1的長方形.把這個長方形剪一剪、拼一拼后形成正方形,則正方形的面積應(yīng)為_____________,設(shè)正方形的邊長為,則_________;
(2)我們可以把有些帶根號的無理數(shù)的被開方數(shù)表示成兩個正整數(shù)平方和的形式,比如.類比此,可以將(1)中的表示成_____________;
(3)的幾何意義可以理解為:以長度2和3為直角邊的直角三角形的斜邊長為;類比此,(2)中的可以理解為以長度________和__________為直角邊的直角三角形斜邊的長;
(4)剪一剪:由(3)可畫出如圖②的分割線,把長方形分成五部分;
(5)拼一拼:把圖②中五部分拼接得到如圖③的正方形;
問題解決:仿照上面的探究方法請把圖④中長為17,寬為1的長方形剪一剪,在圖⑤中畫出拼成的正方形.(說明:圖④的分割過程不作評分要求,只對圖⑤中畫出的最終結(jié)果評分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定“中小學(xué)生每天在校體育活動時間不低于1小時”.為此,某市就“你每天在校體育活動時間是多少”的問題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(部分)如圖所示,其中分組情況是:
A組:;B組:
C組:D組:
請根據(jù)上述信息解答下列問題:
(1)C組的人數(shù)是;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組內(nèi);
(3)若該轄區(qū)約有24 000名初中學(xué)生,請你估計其中達(dá)國家規(guī)定體育活動時間的人約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸負(fù)半軸交于點A(-1,0),與y軸正半軸交與點B,頂點為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過A、B.
(1) 求一次函數(shù)解析式;
(2)求頂點P的坐標(biāo);
(3)平移直線AB使其過點P,如果點M在平移后的直線上,且,求點M坐標(biāo);
(4)設(shè)拋物線的對稱軸交x軸與點E,聯(lián)結(jié)AP交y軸與點D,若點Q、N分別為兩線段PE、PD上的動點,聯(lián)結(jié)QD、QN,請直接寫出QD+QN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com