4.計(jì)算:-22÷(3-$\frac{1}{2}$)-(2-4).

分析 原式先計(jì)算乘方運(yùn)算,再計(jì)算除法運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果.

解答 解:原式=-4÷$\frac{5}{2}$-(-2)=-$\frac{8}{5}$+2=$\frac{2}{5}$.

點(diǎn)評(píng) 此題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.閱讀下列材料:
有這樣一個(gè)問(wèn)題:關(guān)于x 的一元二次方程a x2+bx+c=0(a>0)有兩個(gè)不相等的且非零的實(shí)數(shù)根.探究a,b,c滿足的條件.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過(guò)程:
①設(shè)一元二次方程ax2+bx+c=0(a>0)對(duì)應(yīng)的二次函數(shù)為y=ax2+bx+c(a>0);
②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中a,b,c滿足的條件,列表如下:
方程根的幾何意義:請(qǐng)將(2)補(bǔ)充完整
方程兩根的情況對(duì)應(yīng)的二次函數(shù)的大致圖象a,b,c滿足的條件
方程有兩個(gè)
不相等的負(fù)實(shí)根
$\left\{\begin{array}{l}a>0\\△={b^2}-4ac>0\\-\frac{2a}<0\\ c>0.\end{array}\right.$
方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根$\left\{\begin{array}{l}a>0\\ c<0.\end{array}\right.$
方程有兩個(gè)
不相等的正實(shí)根
$\left\{\begin{array}{l}a>0\\△={b^2}-4ac>0\\-\frac{2a}>0\\ c>0.\end{array}\right.$
(1)參考小明的做法,把上述表格補(bǔ)充完整;
(2)若一元二次方程mx2-(2m+3)x-4m=0有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖所示,數(shù)軸上點(diǎn)A、B對(duì)應(yīng)的有理數(shù)分別為a、b,下列說(shuō)法正確的是( 。
A.ab>0B.a+b>0C.|a|-|b|<0D.a-b<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E,連接BD.
(1)求證:DE是⊙O的切線;
(2)若$\frac{BD}{DE}$=$\frac{{\sqrt{5}}}{2}$,AD=4$\sqrt{5}$,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列判斷中,正確的是( 。
①銳角的補(bǔ)角一定是鈍角;
②一個(gè)角的補(bǔ)角一定大于這個(gè)角;
③如果兩個(gè)角是同一個(gè)角的補(bǔ)角,那么它們相等;
④銳角和鈍角互補(bǔ).
A.①②B.①③C.①④D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.用四舍五入法,分別按要求取0.05026的近似值,下列四個(gè)結(jié)果中錯(cuò)誤的是( 。
A.0.1(精確到0.1)B.0.05(精確到0.01)
C.0.05(精確到0.001)D.0.0503(精確到0.0001)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,已知∠AOD:∠BOD=1:3,OC是∠AOD的平分線.若∠AOB=120°,求:
(1)∠COD的度數(shù).
(2)∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.計(jì)算
(1)-18×($\frac{1}{2}$+$\frac{2}{3}$-$\frac{5}{6}$);
(2)(-1)3-(1-$\frac{1}{2}$)÷3×[2-(-3)2].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列各圖案中是軸對(duì)稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案