【題目】如圖,矩形ABCD中,AB=15cm,點(diǎn)E在AD上,且AE=9cm,連接EC,將矩形ABCD沿直線BE翻折,點(diǎn)A恰好落在EC上的點(diǎn)A′處,則A′C=cm.
【答案】8
【解析】解:∵四邊形ABCD是矩形,
∴AB=CD=15cm,∠A=∠D=90°,AD∥BC,AD=BC,
∴∠DEC=∠A′CB,
由折疊的性質(zhì),得:A′B=AB=15cm,∠BA′E=∠A=90°,
∴A′B=CD,∠BA′C=∠D=90°,
在△A′BC和△DCE中,
,
∴△A′BC≌△DCE(AAS),
∴A′C=DE,
設(shè)A′C=xcm,則BC=AD=DE+AE=x+9(cm),
在Rt△A′BC中,BC2=A′B2+A′C2,
即(x+9)2=x2+152,
解得:x=8,
∴A′C=8cm.
所以答案是:8.
【考點(diǎn)精析】掌握翻折變換(折疊問(wèn)題)是解答本題的根本,需要知道折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,AC、BD交于點(diǎn)O,過(guò)點(diǎn)O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點(diǎn),連接EG、GF、FH、HE.
(1)如圖1,試判斷四邊形EGFH的形狀,并說(shuō)明理由;
(2)如圖2,當(dāng)EF⊥GH,AC=BD時(shí),四邊形EGFH的形狀是;
(3)在(2)的條件下,若AC⊥BD(如圖3),四邊形EGFH的形狀是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的一塊地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,則這塊地的面積為( )平方米.
A.96
B.204
C.196
D.304
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com