【題目】我們用表示不大于的最大整數(shù),例如:,,;用表示大于的最小整數(shù),例如:,,.解決下列問題:
(1)= ,,= ;
(2)若=2,則的取值范圍是 ;若=-1,則的取值范圍是 ;
(3)已知,滿足方程組,求,的取值范圍.
【答案】(1)-5,4;(2),;(3),.
【解析】
試題(1)根據(jù)題目條件:用[a]表示不大于a的最大整數(shù),用<a>表示大于a的最小整數(shù),可分別求解;(2)根據(jù)[a]表示不大于a的最大整數(shù),可得[x]=2中的2≤x<3,根據(jù)<a>表示大于a的最小整數(shù),可得<y>=-1中,-2≤y<-1;(3)先解方程組,求出[x]和<y>的值,然后求出x和y的取值范圍.
試題解析:
解:(1)由題意得,[-4.5]=-5,<3.5>=4;
(2)因?yàn)?/span>[a]表示不大于a的最大整數(shù)且[x]=2,所以x的取值范圍是2≤x<3;
因?yàn)椋?/span>a>表示大于a的最小整數(shù),且<y>=-1, 所以y的取值范圍是-2≤y<-1;
(3)解方程組得:
[x]="-1," <y>=3 所以x,y的取值范圍分別為-1≤x<0,2≤y<3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;
(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CA⊥AB,垂足為 A,AB=24,AC=12,射線 BM⊥AB,垂足為 B, 一動(dòng)點(diǎn) E 從 A點(diǎn)出發(fā)以 3 厘米/秒沿射線 AN 運(yùn)動(dòng),點(diǎn) D 為射線 BM 上一動(dòng)點(diǎn), 隨著 E 點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持 ED=CB,當(dāng)點(diǎn) E 經(jīng)過______秒時(shí),△DEB 與△BCA 全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD 和 BE 是△ABC 的兩條高,∠BCD=45°,BF=FC,BE與 DF、DC分別交于點(diǎn) G、H,∠ACD=∠CBE.
(1)證明:AB=BC;
(2)判斷 BH 與 AE 之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)結(jié)合已知條件,觀察圖形,你還能發(fā)現(xiàn)什么結(jié)論?請(qǐng)寫出兩個(gè)(不與前面結(jié)論相同).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC請(qǐng)你按要求作圖、解答(不寫作法,但要保留作圖痕跡):
(1)用直尺和圓規(guī),過點(diǎn)B作∠ABC的角平分線交AC于P;
(2)用直尺和直角三角板的直角畫PD⊥AB、PE⊥BC垂足分別為D、E;
(3)用刻度尺分別量PD= cm和PE= cm.得PD PE(填大小關(guān)系)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=a,AD:DE=4:1,寫出求DE長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com