年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知:二次函數(shù)的圖象與x軸交于點(diǎn)A,B(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于點(diǎn)C,△ABC的面積為12.
(1)①填空:二次函數(shù)圖象的對稱軸為 ;
②求二次函數(shù)的解析式;
(2) 點(diǎn)D的坐標(biāo)為(-2,1),點(diǎn)P在二次函數(shù)圖象上,∠ADP為銳角,且,求點(diǎn)P的橫坐標(biāo);
(3)點(diǎn)E在x軸的正半軸上,,點(diǎn)O與點(diǎn)關(guān)于EC所在直線對稱.作⊥于點(diǎn)N,交EC于點(diǎn)M.若EM·EC=32,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動點(diǎn)P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點(diǎn)B向點(diǎn)A運(yùn)動,點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動且速度是點(diǎn)P運(yùn)動速度的2倍.
(1)求此拋物線的解析式和直線的解析式;
(2)如果點(diǎn)P和點(diǎn)Q同時出發(fā),運(yùn)動時間為t(秒),試問當(dāng)t為何值時,以A、P、Q為頂點(diǎn)的三角形與△AOC相似;
(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大.若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知A、B是反比例函數(shù)上的兩點(diǎn),BC∥x
軸,交y軸于C,動點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C勻速運(yùn)動,
終點(diǎn)為C,過運(yùn)動路線上任意一點(diǎn)P作PM⊥x軸于M,PN⊥y軸于N,設(shè)四
邊形OMPN的面積為S,P點(diǎn)運(yùn)動的時間為t,則S關(guān)于t的函數(shù)圖象大致
是( )
|
A B C D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于,兩點(diǎn). C為二次函數(shù)圖象的頂點(diǎn).
(1)求二次函數(shù)的解析式;
(2)定義函數(shù)f:“當(dāng)自變量x任取一值時,x對應(yīng)的函數(shù)值分別為y1或y2,若y1≠y2,函數(shù)f的函數(shù)值等于y1、y2中的較小值;若y1=y2,函數(shù)f的函數(shù)值等于y1(或y2).” 當(dāng)直線(k >0)與函數(shù)f的圖象只有兩個交點(diǎn)時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com