【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點(diǎn)E是邊AB上的動(dòng)點(diǎn),點(diǎn)F是射線CD上一點(diǎn),射線ED和射線AF交于點(diǎn)G,且∠AGE=∠DAB.
(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點(diǎn)F在邊CD上(不與點(diǎn)C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.
【答案】(1)7;(2)15或;(3)().
【解析】
試題分析:(1)作DH⊥AB于H,如圖1,易得四邊形BCDH為矩形,則DH=BC=12,CD=BH,再利用勾股定理計(jì)算出AH,從而得到BH和CD的長;
(2)分類討論:當(dāng)EA=EG時(shí),則∠AGE=∠GAE,則判斷G點(diǎn)與D點(diǎn)重合,即ED=EA,作EM⊥AD于M,如圖1,則AM=AD=,通過證明Rt△AME∽R(shí)t△AHD,利用相似比可計(jì)算出此時(shí)的AE長;當(dāng)GA=GE時(shí),則∠AGE=∠AEG,可證明AE=AD=15,(3)作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再證明△EAG∽△EDA,則利用相似比可表示出EG=,則可表示出DG,然后證明△DGF∽△EGA,于是利用相似比可表示出x和y的關(guān)系.
試題解析:(1)作DH⊥AB于H,如圖1,易得四邊形BCDH為矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;
(2)當(dāng)EA=EG時(shí),則∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G點(diǎn)與D點(diǎn)重合,即ED=EA,作EM⊥AD于M,如圖1,則AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽R(shí)t△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;
當(dāng)GA=GE時(shí),則∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,綜上所述,△AEC是以EG為腰的等腰三角形時(shí),線段AE的長為或15;
(3)作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=():,∴(9<x<).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=6cm,現(xiàn)有一動(dòng)點(diǎn)P從A出發(fā)以2cm/秒的速度,沿矩形的邊A—B—C—D回到點(diǎn)A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒。
(1)當(dāng)t=3秒時(shí),求△ABP的面積;
(2)當(dāng)t為何值時(shí),點(diǎn)P與點(diǎn)A的距離為5cm?
(3)當(dāng)t為何值時(shí)(2<t<5),以線段AD、CP、AP的長度為三角形是直角三角形,且AP是斜邊。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種西裝和領(lǐng)帶,西裝每套定價(jià)200元,領(lǐng)帶每條定價(jià)40元.國慶節(jié)期間商場決定開展促銷活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案:
方案一:買一套西裝送一條領(lǐng)帶;
方案二:西裝和領(lǐng)帶都按定價(jià)的90%付款.
現(xiàn)某客戶要到該商場購買西裝20套,領(lǐng)帶x.
(1)若該客戶按方案一購買,需付款多少元(用含x的式子表示)?若該客戶按方案二購買,需付款多少元(用含x的式子表示)?
(2)若,通過計(jì)算說明此時(shí)按哪種方案購買較為合算;
(3)當(dāng)時(shí),你能給出一種更為省錢的購買方法嗎?試寫出你的購買方法和所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在一條東西向的雙軌鐵路上迎面駛來一快一慢兩列火車,快車長AB=2(單位長度),慢車長CD=4(單位長度),設(shè)正在行駛途中的某一時(shí)刻,如圖,以兩車之間的某點(diǎn)O為原點(diǎn),取向右方向?yàn)檎较虍嫈?shù)軸,此時(shí)快車頭A在數(shù)軸上表示的數(shù)是a,慢車頭C在數(shù)軸上表示的數(shù)是c,且|a+8|與(c﹣16)2互為相反數(shù).
溫馨提示:忽略兩輛火車的車身及雙鐵軌的寬度.
(1)求此時(shí)刻快車頭A與慢車頭C之間相距 單位長度.
(2)從此時(shí)刻開始,若快車AB以6個(gè)單位長度/秒的速度向右勻速繼續(xù)行駛,同時(shí)慢車CD以2個(gè)單位長度/秒的速度向左勻速繼續(xù)行駛,再行駛 秒兩列火車的車頭A、C相距8個(gè)單位長度.
(3)在(2)中快車、慢車速度不變的情況下,此時(shí)在快車AB上有一位愛動(dòng)腦筋的七年級(jí)學(xué)生乘客P,他發(fā)現(xiàn)行駛中有一段時(shí)間t秒鐘內(nèi),他的位置P到兩列火車頭A、C的距離和加上到兩列火車尾B、D的距離和是一個(gè)不變的值(即PA+PC+PB+PD為定值).則這段時(shí)間t是 秒,定值是 單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,求作一點(diǎn)P,使P到∠A的兩邊的距離相等,且PA=PB.下列確定P點(diǎn)的方法正確的是( )
A.P為∠A與∠B的平分線的交點(diǎn)
B.P為∠A的平分線與AB的垂直平分線的交點(diǎn)
C.P為AC,AB兩邊上的高的交點(diǎn)
D.P為AC,AB兩邊的垂直平分線的交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是的中點(diǎn),AE⊥AC于A,與⊙O及CB的延長線交于點(diǎn)F、E,且.
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com