【題目】某地區(qū)山峰的高度每增加1百米,氣溫大約降低0.6℃.氣溫T(℃)和高度h(百米)的函數(shù)關(guān)系如圖所示.請根據(jù)圖象解決下列問題:
(1)求高度為5百米時的氣溫.
(2)求T關(guān)于h的函數(shù)表達(dá)式.
(3)測得山頂?shù)臍鉁貫?/span>6℃,求該山峰的高度.
【答案】(1)12℃;(2)T=-0.6h+15;(2)15;(3)該山峰的高度大約為15百米
【解析】
(1)根據(jù)高度每增加1百米,氣溫大約降低0.6℃,由3百米時溫度為13.2°C,即可得出高度為5百米時的氣溫;
(2)應(yīng)用待定系數(shù)法解答即可;
(3)根據(jù)(2)T=-0.6h+15的結(jié)論,將T=6代入,解答即可.
解:(1)由題意得 高度增加2百米,則溫度降低2×0.6=1.2(℃).
∴13.2-1.2=12
∴高度為5百米時的氣溫大約是12℃.
(2)設(shè)T=-0.6h+b(k≠0),
當(dāng)h=3時,T=13.2,
13.2=-0.63+b,
解得 b=15.
∴T=-0.6h+15.
(3)當(dāng)T=6時,6=-0.6h+15,
解得h=15.
∴該山峰的高度大約為15百米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是圓上一點,點D是半圓的中點,連接CD交OB于點E,點F是AB延長線上一點,CF=EF.
(1)求證:FC是⊙O的切線;
(2)若CF=5,,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知OA是⊙O的半徑,OA=1,點P是OA上一動點,過P作弦BC⊥OA,連接AB、AC.
(1)如圖1,若P為OA中點,則AC=______,∠ACB=_______°;
(2)如圖2,若移動點P,使AB、CO的延長線交于點D.記△AOC的面積為S1,△BOD的面積為S2.△AOD的面積為S3,且滿足,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是某浴室花灑實景圖,圖2是該花灑的側(cè)面示意圖.已知活動調(diào)節(jié)點B可以上下調(diào)整高度,離地面CD的距離BC=160cm.設(shè)花灑臂與墻面的夾角為α,可以扭動花灑臂調(diào)整角度,且花灑臂長AB=30cm.假設(shè)水柱AE垂直AB直線噴射,小華在離墻面距離CD=120cm處淋。
(1)當(dāng)α=30°時,水柱正好落在小華的頭頂上,求小華的身高DE.
(2)如果小華要洗腳,需要調(diào)整水柱AE,使點E與點D重合,調(diào)整的方式有兩種:
①其他條件不變,只要把活動調(diào)節(jié)點B向下移動即可,移動的距離BF與小華的身高DE有什么數(shù)量關(guān)系?直接寫出你的結(jié)論;
②活動調(diào)節(jié)點B不動,只要調(diào)整α的大小,在圖3中,試求α的度數(shù).
(參考數(shù)據(jù):≈1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=,∠B=45°,∠C=60°.
(1)求BC邊上的高線長.
(2)點E為線段AB的中點,點F在邊AC上,連結(jié)EF,沿EF將△AEF折疊得到△PEF.
①如圖2,當(dāng)點P落在BC上時,求∠AEP的度數(shù).
②如圖3,連結(jié)AP,當(dāng)PF⊥AC時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市在開展線上教學(xué)活動期間,為更好地組織初中學(xué)生居家體育鍛煉,隨機抽取了部分初中學(xué)生對“最喜愛的體育鍛煉項目”進行線上問卷調(diào)查(每人必須且只選其中一項),得到如下兩幅不完整的統(tǒng)計圖表,請根據(jù)圖表信息回答下列問題:
類別 | 項 目 | 人數(shù) |
A | 跳繩 | 59 |
B | 健身操 | ▲ |
C | 俯臥撐 | 31 |
D | 開合跳 | ▲ |
E | 其它 | 22 |
(1)求參與問卷調(diào)查的學(xué)生總?cè)藬?shù).
(2)在參與問卷調(diào)查的學(xué)生中,最喜愛“開合跳”的學(xué)生有多少人?
(3)該市共有初中學(xué)生約8000人,估算該市初中學(xué)生中最喜愛“健身操”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)前夕“新型冠狀病毒”爆發(fā),疫情就是命令,防控就是使命.全國各地馳援武漢的醫(yī)護工作者,踐行醫(yī)者仁心的使命與擔(dān)當(dāng),舍小家,為大家,用自己的專業(yè)知識與血肉之軀構(gòu)筑起全社會抗擊疫情的鋼鐵長城.下面是2月9日當(dāng)天全國部分省市馳援武漢醫(yī)護工作者的人數(shù)統(tǒng)計圖(不完整).
請解答下列問題:
(1)①上述省市2月9日當(dāng)天馳援武漢的醫(yī)護工作者的總?cè)藬?shù)為 人;
②請將條形統(tǒng)計圖補充完整;
(2)請求出扇形統(tǒng)計圖中“山東”所對應(yīng)扇形的圓心角的度數(shù);
(3)本次山東馳援武漢的醫(yī)護工作者中,有5人報名去重癥區(qū),王醫(yī)生和李醫(yī)生就在其中,若從報名的5人中隨機安排2人,求同時安排王醫(yī)生和李醫(yī)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于點A(a,﹣2),B兩點.
(1)反比例函數(shù)的表達(dá)式 ,點B的坐標(biāo)為 .
(2)不等式x﹣>0的解集為 .
(3)P是第一象限內(nèi)反比例函數(shù)的圖象上一點,過點P作y軸的平行線,交直線AB于點C,連接PO,若△POC的面積為3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)自變量的取值范圍是全體實數(shù),與的幾組對應(yīng)值列表如下:
其中, .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)直線經(jīng)過,若關(guān)于的方程有個不相等的實數(shù)根,則的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com