【題目】二次函數(shù)yx2+bx的圖象如圖,對(duì)稱(chēng)軸為x1.若關(guān)于x的一元二次方程x2+bx2t0t為實(shí)數(shù))在﹣1x≤4的范圍內(nèi)有解,則t的取值范圍是_____

【答案】0.5≤t≤4

【解析】

一元二次方程x2+bx2t0t為實(shí)數(shù))在﹣1x≤4的范圍內(nèi)有解,即直線y2t與二次函數(shù)yx2+bx,在這個(gè)范圍內(nèi)有交點(diǎn),則:y2t在頂點(diǎn)和x4時(shí)之間時(shí),兩個(gè)函數(shù)有交點(diǎn),即可求解.

解:∵拋物線的對(duì)稱(chēng)軸為直線x=﹣1,解得b=﹣2,

∴拋物線解析式為yx22x,頂點(diǎn)坐標(biāo)為(1,﹣1),

當(dāng)x=﹣1時(shí),y3,當(dāng)x4時(shí),y8

∵一元二次方程x2+bx2t0t為實(shí)數(shù))在﹣1x≤4的范圍內(nèi)有解,

∴直線y2t與二次函數(shù)yx2+bx在﹣1x≤4范圍內(nèi)有交點(diǎn),

∴﹣1≤2t≤8,

∴﹣0.5≤t≤4

故答案為:﹣0.5≤t≤4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】省教育廳決定在全省中小學(xué)開(kāi)展關(guān)注校車(chē)、關(guān)愛(ài)學(xué)生為主題的交通安全教育宣傳周活動(dòng),某中學(xué)為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖(如圖所示),請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題.

(1)m= %,這次共抽取 名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;

(2)在這次抽樣調(diào)查中,采用哪種上學(xué)方式的人數(shù)最多?

(3)如果該校共有1500名學(xué)生,請(qǐng)你估計(jì)該校騎自行車(chē)上學(xué)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)絡(luò)比網(wǎng)絡(luò)的傳輸速度快10倍以上,因此人們對(duì)產(chǎn)品充滿期待.華為集團(tuán)計(jì)劃2020年元月開(kāi)始銷(xiāo)售一款產(chǎn)品.根據(jù)市場(chǎng)營(yíng)銷(xiāo)部的規(guī)劃,該產(chǎn)品的銷(xiāo)售價(jià)格將隨銷(xiāo)售月份的變化而變化.若該產(chǎn)品第個(gè)月(為正整數(shù))銷(xiāo)售價(jià)格為/臺(tái),滿足如圖所示的一次函數(shù)關(guān)系:且第個(gè)月的銷(xiāo)售數(shù)量(萬(wàn)臺(tái))與的關(guān)系為.

1)該產(chǎn)品第6個(gè)月每臺(tái)銷(xiāo)售價(jià)格為______元;

2)求該產(chǎn)品第幾個(gè)月的銷(xiāo)售額最大?該月的銷(xiāo)售價(jià)格是多少元/臺(tái)?

3)若華為董事會(huì)要求銷(xiāo)售該產(chǎn)品的月銷(xiāo)售額不低于27500萬(wàn)元,則預(yù)計(jì)銷(xiāo)售部符合銷(xiāo)售要求的是哪幾個(gè)月?

4)若每銷(xiāo)售1萬(wàn)臺(tái)該產(chǎn)品需要在銷(xiāo)售額中扣除元推廣費(fèi)用,當(dāng)時(shí)銷(xiāo)售利潤(rùn)最大值為22500萬(wàn)元時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系x0y中,對(duì)于圖形G,若存在一個(gè)正方形γ,這個(gè)正方形的某條邊與x軸垂直,且圖形G上的所有的點(diǎn)都在該正方形的內(nèi)部或者邊上,則稱(chēng)該正方形γ為圖形G的一個(gè)正覆蓋.很顯然,如果圖形G存在一個(gè)正覆蓋,則它的正覆蓋有無(wú)數(shù)個(gè),我們將圖形G的所有正覆蓋中邊長(zhǎng)最小的一個(gè),稱(chēng)為它的緊覆蓋.如圖所示,圖形G為三條線段和一個(gè)圓弧組成的封閉圖形,圖中的三個(gè)正方形均為圖形G的正覆蓋,其中正方形ABCD就是圖形G的緊覆蓋.

(1)對(duì)于半徑為2的⊙0,它的緊覆蓋的邊長(zhǎng)為 .

(2)如圖1,點(diǎn)P為直線y=-2x+3上一動(dòng)點(diǎn),若線段OP的緊覆蓋的邊長(zhǎng)為2,求點(diǎn)P的坐標(biāo);

(3)如圖2,直線y=3x+3與x軸,y軸分別交于A,B,

①以0為圓心,r為半徑的⊙0與線段AB有公共點(diǎn),且由⊙0與線段AB組成的圖形G的緊覆蓋的邊長(zhǎng)小于4,直接寫(xiě)出r的取值范圍;

②若在拋物線y=ax2+2ax-2(a≠0)上存在點(diǎn)C,使得△ABC的緊覆蓋的邊長(zhǎng)為3,直接寫(xiě)出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)種植AB、C三種樹(shù)苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹(shù)苗,且每名工人每天可植A種樹(shù)苗8棵;或植B種樹(shù)苗6棵,或植C種樹(shù)苗5棵.經(jīng)過(guò)統(tǒng)計(jì),在整個(gè)過(guò)程中,每棵樹(shù)苗的種植成本如圖所示.設(shè)種植A種樹(shù)苗的工人為x名,種植B種樹(shù)苗的工人為y名.

1)求yx之間的函數(shù)關(guān)系式;

2)設(shè)種植的總成本為w元,

wx之間的函數(shù)關(guān)系式;

若種植的總成本為5600元,從植樹(shù)工人中隨機(jī)采訪一名工人,求采訪到種植C種樹(shù)苗工人的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的邊長(zhǎng)是,動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā),以的速度分別沿運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,四邊形的面積為,則的函數(shù)關(guān)系圖象大致為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtFHG中,H=90°FHx軸,,則稱(chēng)RtFHG為準(zhǔn)黃金直角三角形(GF的右上方).已知二次函數(shù)的圖像與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)E0,),頂點(diǎn)為C1,),點(diǎn)D為二次函數(shù)圖像的頂點(diǎn).

1)求二次函數(shù)y1的函數(shù)關(guān)系式;

2)若準(zhǔn)黃金直角三角形的頂點(diǎn)F與點(diǎn)A重合、G落在二次函數(shù)y1的圖像上,求點(diǎn)G的坐標(biāo)及FHG的面積;

3)設(shè)一次函數(shù)y=mx+m與函數(shù)y1y2的圖像對(duì)稱(chēng)軸右側(cè)曲線分別交于點(diǎn)P、Q. P、Q兩點(diǎn)分別與準(zhǔn)黃金直角三角形的頂點(diǎn)FG重合,求m的值并判斷以CD、Q、P為頂點(diǎn)的四邊形形狀,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請(qǐng)你幫他完成如下問(wèn)題:

1)他認(rèn)為該定理有逆定理:“如果一個(gè)三角形某條邊上的中線等于該邊長(zhǎng)的一半,那么這個(gè)三角形是直角三角形”應(yīng)該成立.即如圖①,在中,邊上的中線,若,求證:.

2)如圖②,已知矩形,如果在矩形外存在一點(diǎn),使得,求證:.(可以直接用第(1)問(wèn)的結(jié)論)

3)在第(2)問(wèn)的條件下,如果恰好是等邊三角形,請(qǐng)求出此時(shí)矩形的兩條鄰邊的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接與⊙O,AB=AC,ACBD,垂足為E,點(diǎn)FBD的延長(zhǎng)線上,且DF=DC,連接AFCF。

1)若∠CAD=α,求∠BAC(用含α的代數(shù)式表示);

2)求證:CF是⊙O的切線。

查看答案和解析>>

同步練習(xí)冊(cè)答案