已知直線y=-2x+8交x軸于點(diǎn)A,交y軸于點(diǎn)C,在x軸上A點(diǎn)左邊有一點(diǎn)B,并滿足|AB|=2,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn).求拋物線的解析式.

解:根據(jù)直線的解析式可知:A(4,0),C(0,8),根據(jù)|AB|=2,且B在A點(diǎn)左側(cè),
因此B點(diǎn)的坐標(biāo)為(2,0).
設(shè)拋物線的解析式為y=a(x-4)(x-2).
將C點(diǎn)坐標(biāo)代入拋物線的解析式中,
即可得出a=1.
因此拋物線的解析式為y=(x-4)(x-2)=x2-6x+8.
分析:可先根據(jù)直線的解析式求出A,C的坐標(biāo),然后根據(jù)AB的長,求出B點(diǎn)的坐標(biāo).進(jìn)而可用待定系數(shù)法求出拋物線的解析式.
點(diǎn)評:本題主要考查了待定系數(shù)法求二次函數(shù)解析式,這是求函數(shù)解析式最常用的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=2x+8與x軸和y軸的交點(diǎn)的坐標(biāo)分別是
 
、
 
;與兩條坐標(biāo)軸圍成的三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體骰子(立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x、小明擲B立方體朝上的數(shù)字為y來確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P落在已知直線y=2x上的概率為( 。
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=2x與某反比例函數(shù)圖象的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求這個(gè)反比例函數(shù)的關(guān)系式;
(2)在直角坐標(biāo)系內(nèi)畫出這條直線和這個(gè)反比例函數(shù)的圖象;
(3)試比較這兩個(gè)函數(shù)性質(zhì)的相似處與不同處;
(4)根據(jù)圖象寫出:使這兩個(gè)函數(shù)值均為非負(fù)數(shù)且反比例函數(shù)大于正比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=2x+4與x軸、y軸的交點(diǎn)分別為A、B,y軸上點(diǎn)C的坐標(biāo)為(0,2),在x軸的正半軸上找一點(diǎn)P,使以P、O、C為頂點(diǎn)的三角形與△AOB相似,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=-2x-4與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C在x軸負(fù)半軸上,AC=2.
(1)點(diǎn)P在直線y=-2x-4上,△PAC是以AC為底的等腰三角形,
①求點(diǎn)P的坐標(biāo)和直線CP的解析式;
②請利用以上的一次函數(shù)解析式,求不等式-x-2>x+4的解集.
(2)若點(diǎn)M(x,y)是射線AB上的一個(gè)動點(diǎn),在點(diǎn)M的運(yùn)動過程中,試寫出△BCM的面積S與x的函數(shù)關(guān)系式,并畫出函數(shù)圖象.

查看答案和解析>>

同步練習(xí)冊答案