【題目】如圖,點(diǎn)D在AB上,點(diǎn)E在AC上,BE、CD相交于點(diǎn)O.

(1)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的______,若∠A=45°,∠B=30°,則∠BEC=______;

(2)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度數(shù);

(3)試猜想∠BOC與∠A、∠B、∠C之間的關(guān)系,并證明你猜想的正確性。

【答案】(1)和,75°;(2)30°;(3)∠BOC=∠A+∠B+∠C ,理由見(jiàn)解析

【解析】

1)直接利用三角形的外角的性質(zhì)求出;

2)先利用三角形的外角的性質(zhì)求出∠BDO=80°,最后用三角形的內(nèi)角和定理即可得出結(jié)論;
2)利用三角形的外角的性質(zhì)即可得出結(jié)論.

1 三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和,

∵∠A=45°∠B=30°

,

2∵∠A=50°,∠C=30°

∵∠BOD=70°

BOD中,∠B=180°- ∠BOD- ∠BDO

=180°-70°-80°

=30°

3∠BOC=∠A+∠B+∠C ,理由如下:

∵∠BOC=∠B+∠BDO,∠BDO=∠A+∠C

∴∠BOC=∠A+∠B+∠C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線(xiàn)l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線(xiàn)l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線(xiàn)的解析式;

(2)點(diǎn)D在拋物線(xiàn)上,DEy軸交直線(xiàn)l于點(diǎn)E,點(diǎn)F在直線(xiàn)l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線(xiàn)上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角三角形ABC與直角三角形BDE中,點(diǎn)B,C,D在同一條直線(xiàn)上,已知AC=AE=CD,BACACB的角平分線(xiàn)交于點(diǎn)F,連DF,EF,分別交AB、BCM、N,已知點(diǎn)FABC三邊距離為3,則BMN的周長(zhǎng)為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明用大小相同高度為2cm10塊小長(zhǎng)方體壘了兩堵與地面垂直的木墻AD, BE,當(dāng)他將一個(gè)等腰直角三角板ABC如圖垂直放入時(shí),直角頂點(diǎn)C正好在水平線(xiàn)DE上,銳角頂點(diǎn)AB分別與木墻的頂端重合,求兩堵木墻之間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,點(diǎn)E在AB邊上.

(1)求證:△ACE≌△BCF;

(2)若∠BFE=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,∠A=∠ABC=∠BCD=∠D90°,ABCD5,ADBC13,點(diǎn)E為射線(xiàn)AD上的一個(gè)動(dòng)點(diǎn),若ABEA'BE關(guān)于直線(xiàn)BE對(duì)稱(chēng),當(dāng)A'BC為直角三角形時(shí),AE的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BDA=CDA,則不一定能使ABD≌△ACD的條件是(  )

A. BD=DC B. AB=AC C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】法國(guó)數(shù)學(xué)家柯西于1813年在拉格朗日、高斯的基礎(chǔ)上徹底證明了《費(fèi)馬多邊形數(shù)定理》,其主要突破在五邊形數(shù)的證明上.如圖為前幾個(gè)五邊形數(shù)的對(duì)應(yīng)圖形,請(qǐng)據(jù)此推斷,第10個(gè)五邊形數(shù)應(yīng)該為( 。2018個(gè)五邊形數(shù)的奇偶性為( 。

A. 145;偶數(shù) B. 145;奇數(shù) C. 176;偶數(shù) D. 176;奇數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 ABC中,AB=AC BAC=90°,直角∠ EPF的頂點(diǎn)PBC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)EF,給出以下四個(gè)結(jié)論:①AE=CF;②△ EPF是等腰直角三角形; 2S四邊形AEPF=S ABC; BE+CF=EF.當(dāng)∠ EPF ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)EA、B重合).上述結(jié)論中始終正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案