【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2 , 求k的值.

【答案】
(1)

解:∵原方程有兩個不相等的實數(shù)根,

∴△=(2k+1)2﹣4(k2+1)>0,

解得:k> ,

即實數(shù)k的取值范圍是k> ;


(2)

解:∵根據(jù)根與系數(shù)的關(guān)系得:x1+x2=﹣(2k+1),x1x2=k2+1,

又∵方程兩實根x1、x2滿足x1+x2=﹣x1x2

∴﹣(2k+1)=﹣(k2+1),

解得:k1=0,k2=2,

∵k> ,

∴k只能是2.


【解析】本題考查了根與系數(shù)的關(guān)系和根的判別式的應(yīng)用,能正確運用性質(zhì)進(jìn)行計算是解此題的關(guān)鍵,題目比較好,難度適中.(1)根據(jù)根與系數(shù)的關(guān)系得出△>0,代入求出即可;(2)根據(jù)根與系數(shù)的關(guān)系得出x1+x2=﹣(2k+1),x1x2=k2+1,根據(jù)x1+x2=﹣x1x2得出﹣(2k+1)=﹣(k2+1),求出方程的解,再根據(jù)(1)的范圍確定即可.
【考點精析】本題主要考查了求根公式和根與系數(shù)的關(guān)系的相關(guān)知識點,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(-8,0)及動點Pxy),且2x-y-6.設(shè)三角形OPA的面積為S.

(1)當(dāng)x=-2時,點P坐標(biāo)是____________;

(2)若點P在第二象限,且x為整數(shù)時,求y的值;

(3)是否存在第一象限的點P,使得S=12.若存在,求點P的坐標(biāo);若不存在,

說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,∠ACB=90°,AC=BC,D是AB的中點,點E在AC上,點F在BC上,且AE=CF.

(1)求證:DE=DF,DE⊥DF;

(2)若AC=2,求四邊形DECF面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸、軸分別相交于A、B兩點,且與反比例函數(shù)的圖象在第二象限交于點C.如果點A的坐標(biāo)為(4,0)OA=2OB,點 BAC的中點.

1)求點C的坐標(biāo);

2)求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A(2,5)在反比例函數(shù)y= 的圖象上.一次函數(shù)y=x+b的圖象過點A,且與反比例函數(shù)圖象的另一交點為B.

(1)求k和b的值;
(2)設(shè)反比例函數(shù)值為y1 , 一次函數(shù)值為y2 , 求y1>y2時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,BD⊥AD,∠A=45°,E、F分別是AB、CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項式用記號f(x)來表示.例如f(x)=x2+3x-5,x=某數(shù)時多項式的值用f(某數(shù))來表示.例如x=-1時多項式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.

(1)已知g(x)=-2x2-3x+1,分別求出g(-1)g(-2);

(2)已知h(x)=ax3+2x2-ax-6,當(dāng)h()=a,a的值;

(3)已知f(x)=-2(a,b為常數(shù)),當(dāng)k無論為何值總有f(1)=0,a,b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,AC=6,BD=8,動點P從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止,點P′是點P關(guān)于BD的對稱點,PP′交BD于點M,若BM=x,△OPP′的面積為y,則y與x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,AC=6,BD=8,動點P從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止,點P′是點P關(guān)于BD的對稱點,PP′交BD于點M,若BM=x,△OPP′的面積為y,則y與x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案