【題目】如圖,在正方形ABCD中,△ABE為等邊三角形,連接DE,CE,延長AECDF點(diǎn),則∠DEF的度數(shù)為_____

【答案】105°

【解析】

根據(jù)四邊形ABCD是正方形,可得AB=AD,∠BAD=90°,ABC為等邊三角形,可得AE=BE=AB,∠EAB=60°,從而AE=AD,∠EAD=30°,進(jìn)而求得∠AED的度數(shù),再根據(jù)平角定義即可求得∠DEF的度數(shù).

∵四邊形ABCD是正方形,

AB=AD,∠BAD=90°,

∵△ABE為等邊三角形,

AE=BE=AB,∠EAB=60°,

AE=AD,

EAD=BAD﹣∠BAE=30°,

∴∠AED=ADE=180°30°=75°

∴∠DEF=180°﹣∠AED=180°75°=105°

故答案為105°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天,某交警巡邏車在東西方向的青年路上巡邏,他從崗?fù)?/span>出發(fā),晚上停留在.規(guī)定向東方向?yàn)檎蛭鞣较驗(yàn)樨?fù),當(dāng)天行駛情況記錄如下(單位:千米):

+5,-8+10,-12+6,-18,+5,-2.

1處在崗?fù)?/span>的什么方向?距離崗?fù)?/span>多遠(yuǎn)?

2)若巡邏車每行駛1千米耗油0.1升,這一天共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB1,BC3

1)在圖中,PBC上一點(diǎn),EF垂直平分AP,分別交AD、BC邊于點(diǎn)E、F,求證:四邊形AFPE是菱形;

2)在圖中利用直尺和圓規(guī)作出面積最大的菱形,使得菱形的四個(gè)頂點(diǎn)都在矩形ABCD的邊上,并直接標(biāo)出菱形的邊長.(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD為正方形,已知點(diǎn)A(-6,0),D(-7,3),點(diǎn)B、C在第二象限內(nèi).

(1)點(diǎn)B的坐標(biāo)

(2)將正方形ABCD以每秒1個(gè)單位的速度沿x軸向右平移t,若存在某一時(shí)刻t,使在第一象限內(nèi)點(diǎn)B、D兩點(diǎn)的對(duì)應(yīng)點(diǎn)B′D′正好落在某反比例函數(shù)的圖象上,請(qǐng)求出此時(shí)t的值以及這個(gè)反比例函數(shù)的解析式;

(3)(2)的情況下,問是否存在x軸上的點(diǎn)P和反比例函數(shù)圖象上的點(diǎn)Q,使得以P、Q、B′、D′四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出符合題意的點(diǎn)PQ的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在有些情況下,不需要計(jì)算出結(jié)果也能把絕對(duì)值符號(hào)去掉.

例如: |6+7|=6+7 ; |67|=76 ; |76|=76 |67|=6+7.

1)根據(jù)上面的規(guī)律,把下列各式寫成去掉絕對(duì)值符號(hào)的形式:

|721|=_____;②=_____;③=_____;④ab│=____a<b);

2)用合理的方法計(jì)算: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蝸牛從某點(diǎn)O開始沿東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負(fù)數(shù).爬行的各段路程依次為(單位:厘米):.問:

1)蝸牛最后是否回到出發(fā)點(diǎn)O?

2)蝸牛離開出發(fā)點(diǎn)O最遠(yuǎn)是多少厘米?

3)在爬行過程中,如果每爬行1厘米獎(jiǎng)勵(lì)一粒芝麻,則蝸?傻玫蕉嗌倭Vヂ椋

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtAEB中,∠AEB90°,以斜邊AB為邊向RtAEB形外作正方形ABCD,若正方形ABCD的對(duì)角線交于點(diǎn)O(如圖1).

1)求證:EO平分∠AEB;

2)猜想線段OEEB、EA之間的數(shù)量關(guān)系為   (直接寫出結(jié)果,不要寫出證明過程);

3)過點(diǎn)CCFEBF,過點(diǎn)DDHEAH,CFDH的反向延長線交于點(diǎn)G(如圖2),求證:四邊形EFGH為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如果直線 ykx 與函數(shù) y的圖象恰有 3 個(gè)不同的交點(diǎn),則 k的取值范圍是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E為邊BC的上一動(dòng)點(diǎn),作AFDEDE、DC分別于PF點(diǎn),連PC

1)若點(diǎn)EBC的中點(diǎn),求證:F點(diǎn)為DC的中點(diǎn);

2)若點(diǎn)EBC的中點(diǎn),PE6,PC,求PF的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案