如圖,直角梯形ABCD中,∠BCD=90°,ADBC,BC=CD,E為梯形內(nèi)一點(diǎn),且∠BEC=90°,將△BEC繞C點(diǎn)旋轉(zhuǎn)90°使B與D重合,得到△DCF,連EF交CD于M.已知BC=5,CF=3,則DM:MC的值為______.
連接DF,

∵△BEC繞C點(diǎn)旋轉(zhuǎn)90°使B與DC重合,得到△DCF,
∴△BEC≌△DFC,
∴∠EBC=∠FDC①,BE=DF,CE=CF=3,
在直角三角形BEC中,BE=
BC2-CE2
=4;
已知∠BCD=90°,∠BEC=90°,
∴∠EBC+∠ECB=90°,∠BCE+∠ECM=90°,
∴∠EBC=∠ECM②,
∴由①②得∠ECM=∠FDC;
又∵∠CME=∠DMF,
∴△CME△DMF,
∴DM:MC=DF:CE=4:3.
故答案為:4:3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角梯形ABCD中,∠DAB=∠ABC=90°,ADBC,AD=4,BC=9,E是腰AB上的一點(diǎn),AE=3,BE=12,取CD的中點(diǎn)M,連接MA,MB,則△AMB與△DEC面積的比值為( 。
A.1B.
13
10
C.
169
150
D.
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在菱形ABCD中,∠DAB=60°,過(guò)點(diǎn)C作CE⊥AC且與AB的延長(zhǎng)線交于點(diǎn)E.
求證:四邊形AECD是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ABDC,∠DAB=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點(diǎn)與N點(diǎn)重合,MN和AB在一條直線上,設(shè)等腰梯形ABCD不動(dòng),等腰直角三角形PMN沿AB所在直線以1cm/s的速度向右移動(dòng),直到點(diǎn)N與點(diǎn)B重合為止.
(1)等腰直角三角形PMN在整個(gè)移動(dòng)過(guò)程中與等腰梯形ABCD重疊部分的形狀由______形變化為______形;
(2)設(shè)當(dāng)?shù)妊苯侨切蜳MN移動(dòng)x(s)時(shí),等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)①x=4(s),②x=8(s)時(shí),求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求證:在同一底上的兩個(gè)角相等的梯形是等腰梯形.
已知:
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,菱形ABCD由6個(gè)腰長(zhǎng)為2,且全等的等腰梯形鑲嵌而成,則菱形的對(duì)角線AC的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

梯形同一底上的兩個(gè)角分別為70°和55°,且梯形的上底為7cm,下底為12cm,則與70°角相鄰的腰長(zhǎng)為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等腰梯形的一腰長(zhǎng)為2cm,上底長(zhǎng)為5cm,一個(gè)鈍角是120°,該梯形的周長(zhǎng)等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,用梯形ABCD中,ADBC,AB=AD,BD⊥CD,若∠A=130°,則∠C的度數(shù)為( 。
A.50°B.60°C.65°D.75°

查看答案和解析>>

同步練習(xí)冊(cè)答案